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Abstract

The objective of this report is the development and the examination of Bayes Linear

methods in the Bayesian inverse problems framework. Firstly, this framework, along with

that of the classical inverse problem, is motivated and briefly introduced. Thereafter,

a rigorous presentation of the theory of both conditional expectations and Bayes Linear

approximations for Hilbert space valued random variables is given, both of which focus on

the best estimator property. These estimators will then be used as point estimators of the

solution of a Bayesian inverse problem. However, due to the complexity of the examined

model, the (mostly simulation based) derivation of the conditional expectation is relatively

computationally expensive and the results of the less expensive Bayes Linear estimator are

typically rather poor. Thus, the Ensemble Kalman Filter, which is an efficient method to

approximate conditional expectations, is motivated as a sequential Bayes Linear strategy

and presented in both the data assimilation and the Sequential Monte Carlo setting. With

the aim of improving the efficiency of the Ensemble Kalman Filter by an adaptive step

length, a gradient-free Wolfe-type condition is constructed based on the Bayes Linear

estimator and discussed.

All presented techniques are numerically examined in several experiments. In particular,

estimation results of analytical and simulation based Bayes Linear estimators are compared

with the Ensemble Kalman Filter and with a Monte Carlo simulation (based on autonor-

malised importance sampling) of the conditional expectation. Furthermore, the Ensemble

Kalman Filter both with and without the above-mentioned Bayes Linear line search are

tested against each other. Finally, the Ensemble Kalman Filter is considered in a situation,

where the posterior distribution is multi modal.
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1. Introduction

1. Introduction

Inverse problems appear in various scientific disciplines using mathematical models to de-

scribe the behaviour of some of their objects of interest. Such models are for instance

used to reconstruct an object’s behaviour and thus to enable a more accurate examination

of the object or to predict its behaviour at some future point in time. However, due to

the complexity and the lack of precise prior information of the considered objects, such

models, examinations and predictions based on them tend to contain a great amount of

uncertainty, which should be reduced to produce more reliable and accurate outputs. In

order to do so, the inaccurate model has to be adjusted based on data that has been col-

lected observing the object of interest. This process of incorporating data into the model

is referred to as inverse problem.

More precisely, consider the following framework: some model G describes the behaviour

of some object of interest. This model G is influenced by a (model) parameter u. The

observable part of the object of interest is given by an observation operator O mapping the

model output to the space of observations. Let y be some observation of this behaviour

which is perturbed by some Gaussian noise η, i.e.

(1.1) y := O ◦ G(utrue) + η,

where utrue is the true underlying (model) parameter describing the behaviour of the object

of interest. Furthermore, O ◦ G =: G is called forward response operator.

Fundamental question in inverse problems: Is it possible to identify the true parameter

utrue of the model G, given (noisy) observations y?

Precise definitions of an inverse problem are given in Section 1.1. Before moving on

to that, the elliptic groundwater flow inverse problem is briefly introduced and discussed

to illustrate and motivate the concept above. This groundwater flow inverse problem is

considered for numerical experiments in Section 5.3 and within Uncertainty Quantification

(UQ) thoroughly discussed in [48, Example 6.5] and the considered inverse problem e.g.

in [11].

(1.2) Example (Groundwater flow). Let D ⊆ R2 be an open, connected and bounded

domain with Lipschitz boundary. The objective is to estimate the permeability of the

system, which is given below by exp(u). The parameter u, referred to as log-permeability

in this setting, is some Leb(2)-almost everywhere (Leb(2)-a.e.) bounded R-valued function

1



1. Introduction

on D, i.e. u ∈ L∞(D,BD,Leb(2)). Based on a predefined parameter u the model G

returns the solution p̃ of the elliptic pde:

−∇ · exp(u)∇p = f (on D)(1.3)

p = 0 (on ∂D)

The observation operator O is given by p̃ 7→ (p̃(xm) : m ∈ {1, ...,M}) ∈ RM, where

x ∈ DM. Observations are given by ym := p̃(xm) + ηm (m ∈ {1, ...,M}), where (ηi : i ∈
{1, ...,M}) ∼ N(0,Γ) is an independent and identically distributed (iid.) family of Gaussian

random variables. Intuitively, the observations are noisy values of a set of specific points

of the solution p̃ of the pde (1.3). •

There are different ways to approach inverse problems. Presented are the classical and

the Bayesian way, since the methods to solve inverse problems discussed here are on the

borderline between these two approaches. The classical approach consists of a least squares

minimisation problem. This and its regularisation are briefly introduced in Subsection 1.1.1,

based on [48, Section 6.1]. Thereafter in Subsection 1.1.2, some foundations of Bayesian

statistics are discussed, which then lead to the Bayesian approach’s underlying idea and a

sketched derivation of the general posterior density, which is considered to be the solution

of this class of inverse problems. Last, the connection of the (Bayesian) Maximum-

A-Posteriori estimator and (classical) regularised least squares problem is demonstrated.

Foundations of Bayesian statistics are given in [44, Section 4.1], [48, Section 2.4] and [8,

Chapter 2]. The Bayesian approach to inverse problems is rigorously discussed in [10], [46]

and [48, Section 6.2].

Bayes Linear is a collection of approximate methods in Bayesian statistics which are ap-

plied here in the Bayesian inverse problem framework. The fundamental idea is based on

the optimality property of conditional expectations in expected square error loss. Whilst

conditional expectations are given by some general square integrable function, Bayes Lin-

ear adjusts one’s expectation using an affine function, which is also optimal in expected

square error loss. This affine function can then be derived given only expected values

and (co-)variances of the considered random variables. This report introduces conditional

expectations rigorously in a Hilbert space setting (cf. [32], [12]) in Section 2.1 before con-

structing the Bayes Linear estimator in the same setting in Section 2.2. The conditional

expectations in this setting are similarly defined in [12, Section V.1] and [32]. The Bayes

Linear estimator in a Hilbert space setting is given in [14, Section 4.1] while the finite di-

mensional setting is fundamentally discussed in [19] and the generalised polynomial Bayes

estimator in [18]. A motivational and application-related introduction with a thorough

2



1. Introduction

discussion of properties of several Bayes Linear related methods is given in the textbook of

Goldstein and Wooff [21]. Relevant properties and diverse examples of the Bayes Linear

estimator are considered in Section 2.3. Thereafter, past work on Bayes Linear approaches

for inverse problems (that does not include the Ensemble Kalman Filter) is discussed in

Section 2.4, especially the methods of [20], [49] and [9] are briefly introduced, and direct

Bayes Linear approximations of inverse problem solutions are given, that are either derived

analytically or with Monte Carlo simulated parameters.

The Ensemble Kalman Filter for Inverse Problems as proposed by Iglesias, Law and Stuart

[28] is derived in Chapter 3. It is constructed by applying the typical data assimilation

Ensemble Kalman Filter, which is introduced in Section 3.1, as it is suggested by Evensen

[15], respectively [16], to some auxiliary discrete data assimilation problem. The Ensemble

Kalman Filter has been applied successfully in the Bayesian inverse problem framework as a

robust and often computationally cheap (effective given small ensemble sizes) alternative

to MCMC (cf. [43, Chapter 1]), e.g. in [14], [43], and [28]. The connection of Bayes

Linear and the Ensemble Kalman Filter for inverse problems is demonstrated, as it is

presented by [14, 4.1] and [37, Subsection 3.2.1] and also mentioned by [43], which refer

to Bayes Linear as a Gaussian-type approximation. In the remainder of the report, one

then concentrates on the version of the Ensemble Kalman Filter for inverse problems that

is motivated by Sequential Monte Carlo (SMC) and given in [43]. Evidence is presented

in Chapter 3 that this filter can be understood as a sequential Bayes Linear method.

In Chapter 4, a Bayes Linear approximation is used to construct a backtracking line search

method for the EnKF. This is motivated by the Levenberg-Marquardt approach proposed

by Iglesias in [26] and [27] and also by the typical backtracking line search in some gradient

descent method, as presented in [38], [50] and [51]. Both of these methods are briefly

introduced in Sections 4.1 and 4.2, before the Bayes Linear line search is proposed in

Section 4.3.

Results of numerical experiments are presented in Chapter 5. Considered are a linear

inverse problem [17], [34], [36], a cubic inverse problem, which is similarly given in [46, p.

461, Example 2.2], the groundwater flow inverse problem mentioned in Example (1.2) and

an inverse problem induced by a glucose-insulin model, introduced in [47] and discussed

in [31]. Tested and discussed are the numerical performances of a pure Bayes Linear

approach, the Ensemble Kalman Filter and the Ensemble Kalman Filter with Bayes linear

(backtracking) line search. They are compared in different settings with each other, and

Monte Carlo/Monte Carlo Markov Chain solutions. These settings are specified in the

introduction of Chapter 5. The theoretical and numerical results are finally discussed in

Chapter 6 and suggestions for future research are given.
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1. Introduction

1.1. Notation and Problem Setting

The following paragraph lists several notations and the underlying setting. Assume that

this presented setting holds throughout the entire report. Notations and definitions that

are not given here are given in appendices A and B or in the standard literature cited there.

Let p ∈ [1,∞). The space of Lp-functions mapping from some measure space (Ω,A, µ)

to R is given by Lp(Ω,A, µ) := {f : (Ω,A)→ (R,B) :
∫

Ω
|f |pdµ <∞}, where this symbol

is used to refer to both the function space and the space of equivalence classes of µ-a.e.

equal functions. Hence, specific Banach or Hilbert-space properties, that are then only true

for the equivalence classes, are mentioned specifically. The norm of Lp(Ω,A, µ) is ‖ · ‖Lp :

Lp(Ω,A, µ) → [0,∞), f 7→
(∫

Ω
|f |pdµ

)1/p
. Furthermore, L2(Ω,A, µ) is a Hilbert space

with inner product [L2(Ω,A, µ)]2 3 (f , g) 7→
∫

Ω
f gdµ := 〈f , g〉L2(Ω,A,µ) := 〈f , g〉L2 ∈ R.

Let k,M ∈ N := {1, 2, 3, ...}. The k-dimensional Lebesgue measure is denoted by Leb(k) :

Bk → [0,∞]. The parameter space X is a separable Hilbert space, either given by X :=

L2(D,BD,Leb(k)), where D ⊆ Rk is open and bounded, or X := Rk , and its respective

Euclidean inner product. Given is also the data space Y := RM, which is the separable

Hilbert space with inner product Y 2 3 (x, y) 7→ xTAy =: 〈x, y〉A =: 〈x, y〉Y , defined for

some symmetric, strictly positive definite matrix A ∈ RM×M. The probabilistic framework

of this report is based on some probability triple (Θ,F ,P). Furthermore, X and Y are the

Hilbert spaces of square integrable X-valued and Y -valued random variables.

X := L2(Θ,F ,P;X) := L2(Θ,F ,P)⊗X

:=

{
f : (Θ,F)→ X (P-measurable) :

∫
‖f ‖2

XdP(θ) <∞
}
,

Y := L2(Θ,F ,P; Y ) := L2(Θ,F ,P)⊗ Y

:=

{
f : (Θ,F)→ Y (P-measurable) :

∫
‖f ‖2

AdP(θ) <∞
}
.

The inner products of X and Y are given by 〈f , g〉X :=
∫
〈f (θ), g(θ)〉XdP(θ) and 〈f , g〉Y :=∫

〈f (θ), g(θ)〉Y dP(θ).

Let X := Rk . x ∈ X is (non-degenerate) Gaussian (distributed), if some strictly positive

definite and symmetric matrix Γ ∈ Rk×k and a vector m ∈ Rk exist, such that x#P =:

N(m,Γ)� Leb(k) and

dN(m,Γ)

dLeb(k)
=

1

(2π)k/2(det Γ)1/2
exp(−1

2
〈· −m,Γ−1(· −m)〉X) =: γm,Γ (Leb(k)-a.e.).

4



1. Introduction

In general, if X ∈ {Rk ,L2(D,BD,Leb(k))}, some random variable x ∈ X is Gaussian

(distributed), if for any T ∈ X∗, some m ∈ R and σ2 ∈ [0,∞) exist, such that 〈T |x〉 ∼
N(m,σ2). In this case N(m, 0) := δm is the Dirac measure concentrated on m, i.e.

〈T |x〉 = m (P-a.s.). x Gaussian is denoted by x ∼ N(m0, C0), where the vector or function

m0 :=
∫
xdP is the mean of x and the operator C0 : X → X,ϕ 7→ C0ϕ, defined by

C0ϕ(ω) := 〈c(·, ω), ϕ〉X (ω ∈ D resp. {1, ..., k}),

is the covariance operator of x and

c(ω,ω′) :=

∫
(x(ω, θ)−m0(ω))(x(ω′, θ)−m0(ω′))dP(θ) (ω,ω′ ∈ D resp. {1, ..., k}),

is the covariance function of x .

The forward response operator is typically a continuous function G : X → Y , the unknown

parameter u is an element of X and the data y ∈ Y is given by an evaluation of G(u) + η,

where η ∼ R = N(0,Γ) is a centred Gaussian random variable with some symmetric

and strictly positive definite covariance matrix Γ ∈ RM×M with probability density function

ρ : Rm → [0,∞). The strict positive definiteness of Γ is generally not necessary in the

inverse problem setting. However, this report exclusively considers the noisy setting with

strictly positive definite covariance.

All notations are well-defined (cf. [48, Sections 2.7 and 3.5] and [6, Sections 1.2 and

2.2]).

1.1.1. Classical Approach

Due to stochastic perturbation and potential further complexity, it is typically neither

possible nor reasonable to ‘solve’ the equation y = G(u) - this problem is ill-posed (or:

not well-posed) in the sense of Hadamard [22, p. 50]. This ill-posedness can for instance

be induced by the equation being underdetermined (dimX > dim Y ) or the data being

out of the range of the forward response operator (y /∈ im(G) ⊆ Y ). Thus, the classical

approach to inverse problems is the minimisation of the least squares problem

(1.4) min
u∈X
‖G(u)− y‖2

Y

and its minimiser û := argminu∈X‖G(u)− y‖2
Y is then the solution of the inverse problem.

However, the functional ‖G(·) − y‖2
Y is not necessarily convex. Given that case, it might

have several local minima, which implies that standard methods of numerical optimisation

5



1. Introduction

are possibly not able to find a global minimum or to converge.

Regularisation is a typical way to make the least squares problem (1.4) more approachable

for numerical methods. Several regularisation methods are proposed in [48, Section 6.1].

This report only considers the quadratic regularised least squares problem. This is given

by

(1.5) min
u∈H
‖D−

1
2 (G(u)− y)‖2

Y + ‖u −m‖2
H,

where H is some Banach space embedded in X, D ∈ RM×M is symmetric and strictly

positive definite matrix, and m ∈ H. There are different ways to choose D, H and m.

One possible choice is given below in Corollary (1.12), which is derived within the Bayesian

approach to inverse problems.

1.1.2. Bayesian Approach

The Bayesian approach to inverse problems is, as its name implies, based on Bayesian

statistics. Therefore, some foundations of Bayesian statistics in finite dimensions are

summarised first.

The objective is to gain information about some parameter θ ∈ X := Rk given data ẑ ∈ Y ,

which in this case, can be interpreted as a realisation of a random variable z ∈ Y. The

likelihood of ẑ given this parameter θ is given by some function L : Y × X → [0,∞),

that is proportional to the probability density function of z that is parametrised by θ. Let

θ ∼ µ0 be itself a random variable distributed according to a prior distribution µ0 with

probability density function (pdf) f0. This prior distribution reflects previous knowledge

about θ. Bayes’ rule is then applied to adjust the prior knowledge by the information that

is given by the data ẑ . This adjustment of the prior knowledge is then given by the density

of the posterior distribution f post, which in this case, is the density of the conditional

distribution of θ given z = ẑ and can be derived using Bayes’ rule.

(Bayes’ rule) f post(θ|ẑ) ∝ L(ẑ |θ) · f0(θ)

Conditional distributions are rigorously introduced in Section 2.1. The relation of a con-

ditional distribution to prior and likelihood as given in Bayes’ rule and an intuitive under-

standing of conditioning in probability theory is sufficient to proceed within the current

subsection.

Even if Bayesian Statistics only considers probability distributions to describe parameters,

6



1. Introduction

it is sometimes convenient to also have point estimates for parameters. Similarly to a

Maximum Likelihood estimator in a classical inference setting, the Maximum-A-Posteriori

(MAP) estimator is given by

(1.6) θMAP :∈ argmaxθ∈Xf
post(θ|ẑ).

A similar further point estimate, that is used within Bayesian statistics, often called Bayes

Estimator, is the conditional expectation of θ given that z = ẑ . These are discussed in

Section 2.1.

The regularised classical approach appears to be a reasonable way to solve an inverse

problem. However, the complexity of the forward response operator, multiple minima of

the target functional and a potential dependence of the parameters on each other, implies

that gaining more information than just a point estimate of the solution as given in the

classical approach is reasonable. The Bayesian approach to inverse problems or a Bayesian

inverse problem (BIP) considers an inverse problem in the presented framework of Bayesian

Statistics. It is composed in the following way: let u, which is still the unknown parameter,

be a random variable u ∼ µ0, where µ0 is the prior distribution of u and u is independent

of the noise η. The likelihood of y , that is the likelihood that the random variable G(û)+η

equals y (or η equals G(û)− y), given some parameter û ∈ X, is given by

(1.7) L(y |û) := exp(−1
2
‖G(û)− y‖2

Γ−1),

since η ∼ R = N(0,Γ). The solution of the Bayesian approach to inverse problems is

the posterior distribution of u, which is again the conditional distribution of u given that

G(u) + η = y , and denoted by µy := P(u ∈ ·|G(u) + η = y). However, the parameter

space X is a possibly infinite dimensional function space, i.e. the probability distribution µ0

of u is not given by a probability density function with respect to the Lebesgue measure,

and this setting is not covered by the given version of (Bayes’ rule). The next theorem

deals with this case.

(1.8) Theorem (Bayes’ rule in the Inverse Problem setting). Let Φ : X×Y → R, (u, y) 7→
Φ(u; y) = 1

2
‖G(u)−y‖2

Γ−1 be (µ0⊗R)-measurable, the function −Φ is called log-likelihood

and Φ is called potential. Furthermore, assume that

(1.9) Z(y) :=

∫
exp (−Φ(u; y)) dµ0(u) > 0 (y ∈ Y,R−a.s.).

Then, the conditional probability distribution of u given G(u) + η = y exists and P(u ∈

7



1. Introduction

·|G(u) + η = y) =: µy � µ0. The Radon-Nikodym derivative of µy with respect to µ0 is

(1.10)
dµy

dµ0

(t) =
1

Z(y)
exp (−Φ(t; y)) (t ∈ X,µ0−a.s., y ∈ Y,R−a.s.).

Therefore,

•(1.11) µy =
1

Z(y)
exp (−Φ(·; y))µ0.

Proof. The proof requires measure theoretic considerations that are not given in this

report. The background material and a rigorous derivation are presented in [10] and [48,

Section 6.2].

The last corollary in this section proposes a connection between the regularised least

squares approach and the Bayesian approach. It shows how prior knowledge can be used

in combination with a point estimator.

(1.12) Corollary. Let µ0 = N(m0, C0). The MAP estimator in the Bayesian approach to

inverse problems is given by

(1.13) uMAP ∈ argmaxu∈H − ‖G(u)− y‖2
Γ−1 − ‖u −m0‖2

H,

where H is the Cameron-Martin space of µ0 on X and ‖ · ‖H := ‖C−
1
2

0 · ‖X. The map

estimator is equivalent to the solution of some regularised least squares problem as given

in Equation (1.5). •

Proof. The equivalence of regularised least squares problem and the maximisation problem

is obvious.

Let X := Rk . The MAP estimator is the solution of the maximisation problem

max
u∈X

logL(y |u) + log f0(u),

where f0 is the probability density function of µ0 = N(m0, C0). The target function is given

by

logL(y |u) + log f0(u) = log ρ(G(u)− y) + log f0(u)

= −
1

2
‖G(u)− y‖2

Γ−1 −
1

2
‖C−

1
2

0 (u −m0)‖2
X + c,

where c ∈ R does not depend on u. The summand c and the prefactors are negligible.

8



2. Bayes Linear Statistics

The case where the given parameter space is infinite dimensional is handled in [10] and

[28].

To conclude the introduction an inverse problem including the connection of the classical

and Bayesian approach to solve it is presented graphically in Figure 1.

Parameter u ∈ X

Operator G Noise η

Data y = G(u) + η ∈ Y

Classical approach:

û ∈ argminu∈X‖G(u)− y‖2
Y

Regularisation/MAP

Bayesian approach:

(u ∼ µ0)

P(u ∈ ·|G(u) + η = y)

Figure 1 – Classical and Bayesian approach to inverse problems

2. Bayes Linear Statistics

Bayes Linear Statistics is a collection of methods to linearly approximate the conditional

expectation of some square integrable random variable given another square integrable

random variable. Section 2.1 presents the theory of conditional expectations for Rk- and

L2-valued random variables and especially their optimal estimator property. The subsection

is concluded with examples illustrating ways additional information is used by conditional

expectations to adjust the expectation one has concerning some random variable. Section

2.2 describes how the Bayes Linear estimator is constructed for Rk- and L2-valued random

variables. Thereafter, further statistical properties of the Bayes Linear estimator and

examples are considered in Section 2.3 before proceeding to direct Bayes Linear methods

for inverse problems in Section 2.4. Discussed is also the approach of Goldstein and his

collaborators in [9], [20], and [49].

The content of this chapter is based on the textbooks of Diestel and Uhl [12, Chapters III

9



2. Bayes Linear Statistics

and V], Ash and Doléans-Dade [2, Chapters 4 and 5], Billingsley [3, Chapter 16], Bogachev

[6, Chapter 2], Bühlmann and Gisler [8, Chapters 2 and 3], and Goldstein and Wooff [21,

Chapters 2 and 6] and the papers of Krug [32] and Bochner [5]. Basic principles in measure

theory, (Bochner)-integration and probability theory and standard definitions left out here

can be looked up in [2], [3], [12] or other standard textbooks on (vector) measure and

probability theory. Some relevant definitions and results are also introduced in appendices

A and B.

(2.1) Assumptions. Let C ⊆ F be a σ-algebra containing Θ and (Θ′,F ′) some further

measurable space, fulfilling the condition {θ′} ∈ F ′ for any θ′ ∈ Θ′. Let x ∈ X , y ∈ Y be

square integrable X- resp. Y -valued random variables and z : (Θ,F)→ (Θ′,F ′) be some

other random variable. •

2.1. Conditional Expectation

Let Assumptions (2.1) hold. The overall objective of this chapter is to find an optimal

way to approximate the stochastic behaviour of the random variable x , i.e. to use given

additional information to adjust one’s expectation concerning x .

Without any additional information, the expected value of x can be seen as the best

possible approximation of the unknown x . Best refers here to expected square error loss.

This property is briefly discussed in Remark (2.12).

(2.2) Definition (Expected Value). Let Assumptions (2.1) hold. The expected value of

x is given by

E[x ] :=

∫
x(θ)dP(θ)

(B.10)
=

∫
ξd(x#P)(ξ). •

The expected value is a constant approximation of x with respect to the probability space.

Better, non-constant approximations of x can be obtained using additional information,

that is either:

1. Some other random variable z depending on x

2. A σ-algebra C of events one has prior information about, i.e. it is known whether C

contains θ ∈ Θ for each C ∈ C. θ is a realisation of the probability space (Θ,F ,P).

Consider the case where the given additional information is a second random variable z

and its observed realisation.

10



2. Bayes Linear Statistics

(2.3) Theorem and Definition (Conditional Expectation given z = ·). Let Assumptions

(2.1) hold. A z#P-a.s. unique z#P-measurable function g : (Θ′,F ′) → X exists, such

that the Radon-Nikodym-equation:

(2.4)

∫
{z∈F ′}

xdP =

∫
F ′
g(θ)d(z#P)(θ)

holds in the Hilbert space X for each F ′ ∈ F ′. The function g =: E[x |z = ·] is the

(factorised) conditional expectation of x given z = ·. Additionally, let

E[x |z ] := E[x |z = ·] ◦ z := g(z) : (Θ,F)→ X

be a random variable called the conditional expectation of x given z . •

Here E[x |z = z̃ ] is the expected value of x knowing that the event {z = z̃} occurrs (for

some z̃ ∈ Θ′), which is (in this general setting) defined even if P(z = z̃) = 0. Alternatively

E[x |z ] is by definition a random variable which can be considered as an approximation of

x based on z . Another interpretation of E[x |z ] is given in Corollary (2.8).

Before proving the theorem above, the conditional expectation given some σ-algebra C is

considered, along with some further result.

(2.5) Theorem and Definition (Conditional Expectation given a sub-σ-algebra). Let As-

sumptions (2.1) hold. A P-measurable and P-a.s. unique function h : (Θ, C) → X exists

such that the Radon-Nikodym-equation

(2.6)

∫
C

hdP =

∫
C

xdP

holds in the Hilbert space X for each C ∈ C. h =: E[x |C] is called conditional expectation

of x given C. •

Proof. The proof only considers the case X = R. The general case can be proven simi-

larly, but requires to introduce vector measures and the Radon-Nikodym theory for vector

measures. The proof is similar in this more general case since X is a Hilbert space and the

theorem of Radon-Nikodym holds for Hilbert spaces. [12, p. 122-123, Lemma 3, Theorem

4 and p. 100, Corollary 4 (von Neumann)]

Without loss of generality assume that x ≥ 0 P-a.s.. (Otherwise, consider two cases

x+ := max{x, 0}, x− := max{−x, 0}). Hence, the map

µ̂ : C → [0,∞], C 7→
∫
C

xdP

11



2. Bayes Linear Statistics

is a measure with P-density x . By the Theorem of Radon-Nikodym (B.8), µ̂ � P|C and

also by Radon-Nikodym, a P-a.s. unique map h := dµ̂
dP|C : (Θ, C) → (X,BX) exists and

fulfils Equation (2.6).

The following Lemma, which is a result about measurable functions and stated similarly in

[32, p. 4, Lemma 3] and [2, p. 216, 5.4.2], is required to prove Theorem (2.3).

(2.7) Lemma. Let Assumptions (2.1) hold. Furthermore, let x : (Θ, σ(z)) → X be P-

measurable. Some z#P-a.s. unique z#P-measurable function j : (Θ′,F ′) → X exists,

such that: x = j ◦ z . •

Proof. In the following, the existence of the map j is proven and j is constructed. Then

its measurability is shown and, last, its z#P-a.s. uniqueness is discussed. The functions

x , j , and z and the construction of j are visualised in Figure 2.

X

a
x

(Θ, σ(z))

{z = ẑ}

{x = a}

z j

(Θ′,F ′)

ẑ

Figure 2 – Maps x, z, j and the construction of j as given in Lemma (2.7)

By assumption j has to be a function mapping Θ′ 3 ẑ 7→ x(θ) ∈ X for all θ ∈ {z = ẑ},
which implies that x has to be constant on any level set {z = ·} of z . Since F ′ contains

the singleton {θ′} for any θ′ ∈ Θ′, σ(z) contains any level set {z = ·} of z . σ(z) also

contains any level set {x = ·} of x : let a ∈ X. Either x is simple, then it is given by a

finite partition P ⊆ F of Θ and a vector (ξP : P ∈ P) ∈ XP : x =
∑

P∈P ξP1P , then {x =

a} =
⋃
P∈P:ξP=a P ∈ F or x is the limit of a sequence of simple functions; in which case an

antitone sequence (Fn : n ∈ N) ∈ FN can be chosen such that F 3
⋂∞
n=1 Fn = {x = a}.

The sequence (Fn : n ∈ N) could for instance be given by Fn =
⋃
P∈Pn,P∩{x=a}6=∅ P , where

Pn is the partition of Θ, that is used to define the n-th simple function in the sequence x

is based on. Therefore, every level set of x is in σ(z), which implies that it is either empty

12



2. Bayes Linear Statistics

or the non-empty preimage z−1[F ′] of z of some set F ′ ∈ F ′. This non-empty preimage

is then either a level set of z or a superset of some level set of z , since σ(z) contains no

non-empty strict subsets of level sets of z , due to the construction of initial σ-algebras.

Clearly, x is constant on its level-sets. Therefore x is indeed constant on any level set of

z .

x : (Θ, σ(z))→ X is a P-measurable function, i.e. x is either simple or the limit of a series

of simple functions. Let F ∈ σ(z), i.e. F = z−1[F ′] for some F ′ ∈ F ′ and x = 1F . Choose

j := 1F ′, then j ◦ z = 1F ′ ◦ z = 1F ′(z) = 1z−1[F ′] = 1F = x . Let P ⊆ σ(z) and ξ ∈ XP be

given as above such that x =
∑

P∈P ξP1P . Let P ′ be chosen for each P to be the maximal

set that fulfils P = z−1[P ′]. Then {P ′ : P ∈ P} is a partition of Θ′. Furthermore,

j :=
∑

P∈P ξP1P ′ implies, that j ◦ z :=
∑

P∈P ξP1P ′(z) =
∑

P∈P ξP1z−1[P ′] = x . Let now

(xn : Θ → X, n ∈ N) be a sequence of simple functions with xn → x as n → ∞. Let

(jn : Θ′ → X, n ∈ N) the sequence of simple functions as constructed before. Then

jn ◦ z = xn (n ∈ N). Set then j := limn→∞ jn, wherever (jn : n ∈ N) converges and 0

otherwise. I.e. j is z#P-measurable, whenever x : (Θ, σ(z))→ X is P-measurable, by the

definition of measurability.

The function j , as it is given in the first paragraph, is uniquely defined on im(z). Further-

more, {z ∈ Θ′\im(z)} = ∅, therefore z#P(Θ′\im(z)) is defined, even if Θ′\im(z) 6∈ F ′,
and z#P(Θ′\im(z)) = P(z ∈ Θ′\im(z)) = P(∅) = 0. j |Θ′\im(z) can be chosen arbitrar-

ily.

The preceding Lemma is given in [32, p. 4, Lemma 3] in a slightly different setting. The

function j is uniquely defined instead of only z#P-a.s. unique, given the further assumption

that im(z) = Θ′. Even if this is a stronger result, the given extra assumption does not

seem to be a good match in the Bayesian inverse problem framework. Furthermore, it

is stated in the standard notation of (F-F ′)-measurable functions, rather than Bochner’s

Definition (B.3) (cf. also [5], [12, Section II.1]) notation of P-measurability.

As outlined above, the result of Lemma (2.7) is crucial to prove Theorem (2.3). Thus,

one can now proceed to this proof.

Proof of Theorem (2.3). Let C ∈ σ(z) and C ′ ∈ F ′ be some measurable set, such that

C = z−1[C ′]. By Theorem (2.5), a P-measurable, P-a.s. unique function h : (Θ, σ(z))→
X exists, such that

∫
C
hdP =

∫
C
xdP holds for any C ∈ σ(z)). Furthermore, Lemma

(2.7) implies, that a z#P-a.s. uniquely defined z#P-measurable function g : (Θ′,F ′)→ X

13
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exists, such that h = g ◦ z . Then:∫
z−1[C′]

xdP =

∫
z−1[C′]

hdP =

∫
z−1[C′]

g ◦ zdP
(B.10)

=

∫
C′
gdz#P,

which is equivalent to Definition (2.3).

Even though the proof of Theorem (2.3) applies Theorem (2.5), the two different con-

ditional expectations seem to handle two entirely different structures and can be thought

of as two distinct ways to approximate x. The next two corollaries are well-known results

(cf. e.g. [2]) that link these two structures and lead to the conclusion, that considering

only the z = · case is for the most part (cf. Remark (2.10)) sufficient.

(2.8) Corollary. Let Assumptions (2.1) hold. Then

E[x |z ] = E[x |σ(z)] (P-a.s.) •

Proof. Let A′ ∈ σ(z) and choose A ∈ F ′ such that A′ := z−1[A]. One has to prove, that

E[x |z ] := E[x |z = ·] ◦ z fulfils the Radon-Nikodym-equation (2.6) for A′:∫
A′

E[x |z ]dP =

∫
{z∈A}

(E[x |z = ·] ◦ z)(θ)dP(θ)
(B.10)

=

∫
A

E[x |z = ·]d(z#P)
(2.3)
=

∫
A′
xdP.

(2.9) Corollary. Let Assumptions (2.1) hold. A measurable space (Θ̂, F̂) and a random

variable ŷ : (Θ,F)→ (Θ̂, F̂) can be chosen such that E[x |C] = E[x |ŷ ] (P-a.s.). •

Proof. Set for instance: Θ̂ := Θ and ŷ := idΘ : (Θ,F)→ (Θ, C). Then: σ(ŷ) = C.

(2.10) Remark. 1. As already stated above, the preceding corollaries imply that one can

sufficiently only consider the case of E[x |z = ·], since this conditional expectation can be

used to construct E[x |C]. However, the Bayes Linear estimator is defined under further

assumptions (where the square integrable y is considered instead of z), where depending

on the given probability space (Θ,F ,P) it might be not possible to prove Corollary (2.9) in

the way depicted. This report does not cover any application of E[x |C] within the Bayesian

Inverse Problem setting. Thus, this loss of generality is negligible here.

2. Let X := Rk . Up to this point, the whole section could have been derived with weaker

assumptions on x . In Assumptions (2.1), x is assumed to be square integrable, but merely

the existence of E[x ] is sufficient, the expected value could be even infinite, which is

discussed in [2, Chapter 5] and [3, Chapter 6]. The theorems stated above are equivalent

14
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in the more general case. However, the given assumptions are essential in the remaining

part of the section. •

Besides the Radon-Nikodym-Equation, the conditional expectation of x given z = · can

be characterised as a best approximation of x in the expected square error loss sense.

This is not only essential to define the Bayes Linear estimator, but also used as definition

of the conditional expectation by some authors (cf. [37, 2.3.2 Definition 9] and [35,

Definition 4.45, Theorem 4.52], where both definitions are given, but their equivalence is

not discussed). The equivalence is stated and proven in the theorem below. The case

where X is finite dimensional is also considered in [4, p. 90, 3.2.6].

(2.11) Theorem. Let Assumptions (2.1) hold and let g ∈ J := L2(Θ′,F ′, z#P;X) be

some measurable function. The following statements are equivalent.

1.

g = E[x |z = ·] (P-a.s.), if X = Rk ,

g = E[x |z = ·] (P-a.s., Leb(k)-a.e.), if X = L2(D,BD,Leb(k)).

2. g minimises min
ĝ∈J

E[‖ĝ(z)− x‖2
X] globally. •

Proof. By Lemma (A.6), the minimality of 2 is implied, if

0 = 〈g(z)− x, f (z)〉X = E[〈g(z)− x, f (z)〉X] (f ∈ J ).

Let f ∈ J be chosen arbitrarily. Then,

E[〈g(z)− x, f (z)〉X] =

∫
〈g(z(θ)), f (z(θ))〉XdP(θ)−

∫
〈x(θ), f (z(θ))〉XdP(θ)

(B.10)
=

∫
〈g, f 〉Xd(z#P)−

∫
〈x, f (z)〉XdP.

Let (Ω,A, µ) be a measure space, which is either (Ω,A, µ) := (D,BD,Leb(k)) or

(Ω,A, µ) := ({1, ..., k}, 2{1,...,k},#) and therefore in both cases σ-finite. By definition,

X = L2(Ω,A, µ) in each case.
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(1 ⇒ 2): Consider f : Θ′ ×Ω→ R, (θ′, ω) 7→ f (θ′, ω) := 1F ′(θ′), for some F ′ ∈ F ′.

E[〈g(z)− x, 1F ′(z)〉X] =

∫
〈g(θ′), 1F ′(θ

′)〉Xd(z#P)(θ′)−
∫
〈x(θ), 1F ′(z(θ))〉XdP(θ)

=

∫
F ′

∫
g(θ′, ω)dµ(ω)d(z#P)(θ′)−

∫
{z∈F ′}

∫
x(θ, ω)dµ(ω)dP(θ)

=

∫ (∫
F ′
g(θ′, ω)d(z#P)(θ′)−

∫
{z∈F ′}

x(θ, ω)dP(θ)

)
dµ(ω) = 0,

by Fubini’s theorem. Consider the definition of P-measurability. The linearity of the integral

implies that all simple functions f also fulfil this condition. A P-measurable function, that

is not simple, is the limit of a sequence of simple functions. Given such a function f ,

all simple functions contained in that defining sequence
(∑

P∈Pn ϕ
(n)
P 1P : n ∈ N

)
fulfil the

condition. This sequence can be chosen such that
∑

P∈Pn |ϕ
(n)
P |1P ≤ |f (θ′)| (n ∈ N, θ′ ∈

Θ′, y#P-a.s.), pointwise in Ω as given in Lemma (B.4). Then
∑

P∈Pn ‖ϕ
(n)
P g(θ′)‖X1P (θ′) ≤

‖f (θ′)g(θ′)‖X and
∑

P∈Pn ‖ϕ
(n)
P x(θ)‖X1P (z(θ)) ≤ ‖f (z(θ))x(θ)‖X. Furthermore,

E[‖f (z)x‖X] <∞ and E[‖f (z)g(z)‖X] <∞, since f , x, g are square integrable. Therefore,

the dominated convergence theorem holds (dc, cf. [12, p. 45, Theorem 3]) and∫ (∫
f (θ′, ω)g(θ′, ω)d(z#P)(θ′)−

∫
f (z(θ), ω)x(θ, ω)dP(θ)

)
dµ(ω)

=

∫ (∫
lim
n→∞

∑
P∈Pn

ϕ
(n)
P (ω)1P (θ′)g(θ′, ω)d(z#P)(θ′)

−
∫

lim
n→∞

∑
P∈Pn

ϕ
(n)
P (ω)1P (z(θ))x(θ, ω)dP(θ)

)
dµ(ω)

dc
=

∫ (
lim
n→∞

∑
P∈Pn

ϕ
(n)
P (ω)

(∫
P

g(θ′, ω)d(z#P)(θ′)−
∫
{z∈P}

x(θ, ω)dP(θ)

))
dµ(ω)

=

∫ (
lim
n→∞

∑
P∈Pn

ϕ
(n)
P (ω)

)
· 0dµ(ω) = 0.

(2 ⇒ 1): Without loss of generality, assume x, g ≥ 0 (P-a.s. and µ-a.e.). For any f ∈ J :

〈g(z)−x, f (z)〉X = 0. Let F ′ ∈ F ′, B ∈ A and f (θ′, ω) := 1F ′(θ′)1B(ω) (θ′ ∈ Θ′, ω ∈ Ω).
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Thus,

0 = 〈g(z)− x, 1F ′(z)1B〉X

=

∫
〈g(θ′), 1F ′(θ

′)1B〉Xd(z#P)(θ′)−
∫
〈x(θ), 1F ′(z(θ))1B〉XdP(θ)

=

∫
F ′
〈g(θ′), 1B〉Xd(z#P)(θ′)−

∫
{z∈F ′}

〈x(θ), 1B〉XdP(θ)

=

∫
F ′

∫
B

g(θ′, ω)dµ(ω)d(z#P)(θ′)−
∫
{z∈F ′}

∫
B

x(θ, ω)dµ(ω)dP(θ)

=

∫
B

∫
F ′
g(θ′, ω)d(z#P)(θ′)dµ(ω)−

∫
B

∫
{z∈F ′}

x(θ, ω)dP(θ)dµ(ω),

by the theorem of Fubini. Since B ∈ A is chosen arbitrarily,

A 3 B 7→
∫
B

∫
F ′
g(θ′, ω)d(z#P)(θ′)dµ(ω) ∈ [0,∞),

A 3 B 7→
∫
B

∫
{z∈F ′}

x(θ, ω)dP(θ)dµ(ω) ∈ [0,∞)

are measures, which are identical on the given domain A and absolutely µ-continuous. By

Radon-Nikodym, the densities of both measures are µ-a.e. identical, so∫
F ′
g(θ′, ω)d(z#P)(θ′) =

∫
{z∈F ′}

x(θ, ω)dP(θ) (ω ∈ Ω, µ-a.e.)

which is equivalent to the Definition of the conditional expectation (2.3).

The theorem of Fubini holds each time it is applied, since all functions are contained in

X = L2(Θ,F ,P;X) and therefore absolutely integrable.

(2.12) Remark. The expectation of x is indeed the best constant approximation of x . The

case given no additional information is equivalent to the case given some P-a.s. constant

random variable z . In that case, E[x |z = ·] = E[x ] (z#P-a.s.; [2, p. 224, Theorem 5.5.7

(a’)]) minimises the expected square error loss function, by Theorem (2.11). •

Before concluding this section and moving on to the definition of the Bayes Linear es-

timator, some illustrative examples of conditional expectations are considered. The first

example discusses a setting in which x is finite dimensional and z is discretely distributed.

Hence, the conditional expectation can be derived using the formula:

(2.13) E[x |z = z̃ ] :=
1

P(z = z̃)
E[1{z=z̃}x ] (whenever z̃ ∈ Θ′ : P(z = z̃) > 0),

which coincides with the Definition (2.3) of the conditional expectation: [2, p. 210-211,
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5.3.5].

(2.14) Example. Let Assumptions (2.1) hold and assume furthermore, that X := R,Θ′ :=

{0, 1}, that x ∼ Unif(0, 1) is uniformly distributed, and

z :=

0, if x ∈ (0, 1
2

),

1, otherwise.

i.e. z ∼ ( 1
2
δ0 + 1

2
δ1), respectively P(z = 0) = 1

2
= P(z = 1). So x is randomly picked from

(0, 1) and z contains the information, whether x is in (0, 1
2

) or in [ 1
2
, 1). The expected

value of x is E[x ] = 1
2

. One fairly obvious approach to adjust this expectation of x is to

derive E[x |z = ·] respectively E[x |z ]:

E[x |z = 1]
(2.13)

=
E[1{z=1}x ]

P(z = 1)
=

E[1{x≥ 1
2
}x ]

P(x ≥ 1
2

)
=

3

4
,

E[x |z = 0]
(2.13)

=
E[1{z=0}x ]

P(z = 0)
=

E[1{x< 1
2
}x ]

P(x < 1
2

)
=

1

4
.

Thus, the conditional expectation of x given z is a random variable distributed according

to ( 1
2
δ 1

4
+ 1

2
δ 3

4
). •

The next example illustrates the way in which the conditional expectation approximates a

random variable, in contrast to a Taylor approximation.

(2.15) Example. Let Assumptions (2.1) hold and n ∈ N, Θ := [0, 1], Θ′ := {0, 1, ..., 2n−
1}, X := [1, e] and P = Unif[0, 1]. Let x = exp and z =

∑2n−1
l=0 l1( l

2n
, l+1

2n
]. Let ẑ ∈

{0, ..., 2n − 1}. Then:

E[x |z = ẑ ]
(2.13)

=
E[1{z=ẑ}x ]

P(z = ẑ)
= 2n

∫ (ẑ+1)/2n

ẑ/2n
exp(θ)dθ = 2n[exp( ẑ+1

2n
)− exp( ẑ

2n
)],

so E[x |z ] =
∑2n−1

l=0 2n[exp( l+1
2n

)− exp( l
2n

)]1( l
2n
, l+1

2n
] (P-a.s.) is the approximation of x using

the information provided by z . Another way to approximate x is a Taylor approximation

(cf. e.g. [38, Theorem 2.1]), which uses and preserves the smoothness of x = exp,

rather than information provided by other random variables. This example is continued in

Example (2.33). Figure 3 (a),(b), which is given within this later example, illustrates the

conditional expectations for n ∈ {1, 2, 3} and Taylor polynomials. •

The conditional probability distribution given z = · is a Markov kernel and defined by

P(F |z = ·) := E[1F |z = ·] (z#P-a.s.), for any F ∈ F . Given that it is possible to
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integrate analytically with respect to this Markov Kernel, the conditional expectation can

be derived in the following way:

(2.16) E[x |z = ·] :=

∫
x(θ)dP(θ|z = ·).

This standard result is stated in [2, Section 5.3]. The example below presents a situation

where this method is applied.

(2.17) Example. Let X := Y := Θ′ := R, ẑ ∈ Θ, z#P = N(0, γ2) and x#P(·|z = ẑ) =

N(ẑ , σ2). Then: E[x |z = ẑ ] = ẑ . •

The last example of this section illustrates the Linear Inverse problem in the Bayesian

setting (cf. [17]). The conditional expectation of the unknown parameter x can be

derived analytically in this case.

(2.18) Example. Let x ∼ µ0 = N(m0, C0) be an X-valued random variable and data

ỹ ∈ Y . The operator G : X → Y is linear and continuous. Furthermore, η ∈ Y,

η ∼ N(0,Γ) is Gaussian distributed noise with positive definite covariance matrix Γ ∈ Rk×k .

The conditional expectation of x given Gx + η = ỹ is a point estimate of the unknown x .

In this case,

E[x |Gx + η = ỹ ] = m0 + C0G∗(GC0G∗ + Γ)−1(ỹ − Gm0) (a.s.),

where (GC0G∗ + Γ) is indeed invertible (cf. Remark (2.42)). This result is derived in [34]

and [36], in a more general case. Furthermore, the conditional expectation is affine with

respect to ỹ . •

2.2. Construction of the Bayes Linear Estimator

The preceding Examples (2.14) and (2.15) contain a simple way to derive the conditional

expectation of one random variable given another. This approach however is limited to

discretely distributed z and therefore infeasible in the Bayesian inverse problem setting.

Example (2.17) is based on the fact, that the conditional distribution is known and that

it is possible to integrate analytically with respect to this conditional distribution. In the

Bayesian inverse problem setting, the conditional distribution is implicitly given. However,

since G is typically complex, it is generally non-trivial to integrate with respect to this

distribution. Integration in that case is often based on Monte Carlo (MC) or Monte Carlo

Markov Chains (MCMC). These methods are discussed in [1] and [10, Section 5.2].
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Bayes Linear is an approach which uses some affine function to approximate the conditional

expectation of some random variable x given that y = ·. Since it only depends on the

expected values of x and y , the Covariance operator of y and the Covariance operator of

the joint distribution of x, y , it is generally easier to determine than the precise conditional

expectation.

(2.19) Definition (BLE). Let Assumptions (2.1) hold and ŷ ∈ RM be some realisation of

y . The Bayes Linear estimator (BLE) of x given y = ŷ is given by:

(2.20) xBLE
y=ŷ := E[x ] + Cov(x, y)Cov(y)†(ŷ − E[y ]),

where Cov(x, y) := E[(x − E[x ]) ⊗ (y − E[y ])], Cov(y) := E[(y − E[y ]) ⊗ (y − E[y ])]

and A† is the Moore-Penrose pseudo inverse of some quadratic matrix A ∈ RM×M. The

empirical Bayes Linear estimator (B̂LE) of x given y = ŷ given J ∈ N samples (x (j) : j ∈
{1, ..., J}) ∈ XJ, (y (j) : j ∈ {1, ..., J}) ∈ Y J is given by

(2.21) x B̂LE,J
y=ŷ := x̄J + ĈovJ(x, y)(ĈovJ(y))†(ŷ − ȳJ),

where x̄J := 1
J

∑J
j=1 x

(j), ȳJ := 1
J

∑J
j=1 y

(j), ĈovJ(x, y) := 1
J

∑J
j=1(x (j) − x̄J) ⊗ (y (j) − ȳJ)

and ĈovJ(y) := 1
J

∑J
j=1(y (j) − ȳJ)⊗ (y (j) − ȳJ).

Analogously to Definition (2.3), one denotes xBLE
y := xBLE

y=· ◦ y and x B̂LE,J
y := x B̂LE,J

y=· ◦ y . •

(2.22) Remark. 1. In the following, one only considers the case where Cov(y) (respectively

ĈovJ(y)) is a regular matrix and the Moore-Penrose pseudo inverse is substituted by the

‘normal’ inverse. The following theorems also hold in the more general case (cf. Penrose

[39]). Furthermore, the equivalent of Cov(y) (respectively ĈovJ(y)) in the inverse problem

setting is always regular (cf. Remark (2.42)), due to the assumption that the noise

covariance matrix Γ is strictly positive definite.

2. The empirical Bayes Linear estimator is discussed in Subsection 2.4.3. •

The Lemma below proves that xBLE
y=ŷ is indeed an element of X.

(2.23) Lemma. Let Assumptions (2.1) hold and ŷ ∈ Y . Then xBLE
y=ŷ ∈ X. •

Proof. The statement is true, if X = Rk , since x, y are square integrable. Hence, assume

that X = L2(D,BD,Leb(k)). The proof of (f : D → R, ω 7→ E[x(ω)]), (g : D → R, ω 7→
Cov(x(ω), ym)) ∈ L2(D,BD,Leb(k)) for any m ∈ {1, ...,M} is sufficient to show that

the Lemma holds. Both mappings are each a composition of a linear and a measurable
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mapping, which implies measurability. The Jensen inequality and Tonelli (x is an L2-

function and x2 ≥ 0) implies:∫
E[x(ω)]2dω ≤

∫
E[x(ω)2]dω = E

[∫
x(ω)2dω

]
,

which is bounded, since x ∈ X . Let m ∈ {1, ...,M}, then∫
Cov(x(ω), ym)2dω ≤

∫
Var(x(ω))Var(ym)dω

= Var(ym) ·
∫

Var(x(ω))dω

= Var(ym) ·
∫

E[x(ω)2]− (E[x(ω)])2dω

≤ Var(ym) ·
∫

E[x(ω)2]dω

= Var(ym) · E
[∫

x(ω)2dω

]
,

which again is bounded, since x ∈ X .

The conditional expectation is characterised as an L2-function that approximates some

random variable optimally in terms of expected square error loss in Theorem (2.11). The

Bayes Linear estimator is the equivalent optimal affine function.

(2.24) Theorem. Let Assumptions (2.1) hold and K := {k̂ : Y → X : ∃k0 ∈ X, k ∈ XM :

k̂ = k0 + 〈k, ·〉Y } ⊆ L2(Y,BY, y#P;X). Then

•(2.25) xBLE
y=· ∈ argmink̂∈KE[‖k̂(y)− x‖2

X]

Proof. 1. Prove the subset relation K ⊆ L2(Y,BY, y#P;X). If X is finite dimensional, it

is sufficient that y is square integrable and that L2(Y,BY, y#P;X) is a vector space. Let

X be infinite dimensional and k̂ ∈ K. Then,

E[‖k̂(y)‖2
X] =

∫∫
(k0(ω) + k(ω)T y(θ))2dωdP(θ)

≤ 2

∫
k0(ω)2dω + 2

∫∫
‖k(ω)‖2

Y ‖y(θ)‖2
Y dωdP(θ)

= 2

∫
k0(ω)2dω + 2

∫
‖y(θ)‖2

Y dP(θ)

∫
‖k(ω)‖2

Y dω <∞,

by the Cauchy-Schwarz-inequality. Thus, k̂ ∈ L2(Y,BY, y#P;X).

2. Let k0 := E[x ] − Cov(x, y)Cov(y)−1E[y ] and k := Cov(x, y)Cov(y)−1. By Lemma
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(A.5), the vector (k0, k)T ∈ K is a minimiser, if and only if E[〈k0 +〈k, y〉Y −x, v̂(y)〉X] = 0,

for any v̂ ∈ K. Furthermore,

E[〈k̂(y)− x, v̂(y)〉X] = E[〈k0 + 〈k, y〉Y − x, v̂(y)〉X]

= E[〈E[x ] + Cov(x, y)Cov(y)−1(y − E[y ])− x, v̂(y)〉X]

= E[〈E[x ] + Cov(x, y)Cov(y)−1(y − E[y ])− x, v0 + 〈v , y〉Y 〉X],

which is 0, if E[(E[x ] + Cov(x, y)Cov(y)−1(y −E[y ])− x)ym] = 0, for any m ∈ {1, ...,M},
and E[E[x ] + Cov(x, y)Cov(y)−1(y − E[y ])− x ] = 0, which is indeed true:

E[(E[x ] + Cov(x, y)Cov(y)−1(y − E[y ])− x)ym]

= E[ymE[x ] + Cov(x, y)Cov(y)−1(ymy − ymE[y ])− ymx ]

= E[ym]E[x ] + Cov(x, y)Cov(y)−1(E[ymy ]− E[ym]E[y ])− E[ymx ]

= E[ym]E[x ]− E[ymx ] + Cov(x, y)em

= Cov(x, y)em − Cov(x, ym) = 0,

E[E[x ] + Cov(x, y)Cov(y)−1(y − E[y ])− x ]

= E[x ] + Cov(x, y)Cov(y)−1(E[y ]− E[y ])− E[x ] = 0.

The minimiser of the objective function in Theorem (2.24) is P-a.s. (resp. P-a.s. Leb(k)-

a.e.) unique, i.e. the property above can be used to define the BLE y#P-a.s. (resp. y#P-

a.s. Leb(k)-a.e.). However, this report always considers Definition (2.19) for practical

reasons. Some corollaries of Theorem (2.24) and properties of the BLE are considered in

the next Section 2.3.

2.3. Properties and Examples of Bayes Linear Estimations

2.3.1. Properties

The fundamental characterisation of the Bayes Linear Estimator in Section 2.2 is its opti-

mality in square error loss sense in Theorem (2.24). The BLE also approximates E[x |y = ·]
optimally in the sense of expected square error loss. This is formulated below and also

discussed in [8] and [21].

(2.26) Corollary. Let Assumptions (2.1) hold and K := {k̂ : Y → X : ∃k0 ∈ X, k ∈ XM :
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k̂ = k0 + 〈k, ·〉Y } ⊆ L2(Y,BY, y#P;X). Then

xBLE
y=· ∈ argmink̂∈KE[‖k̂(y)− E[x |y ]‖2

X] •

Proof. Consider the given target functional:

E[‖k̂(y)− E[x |y ]‖2
X] = E[‖k̂(y)− x + x − E[x |y ]‖2

X]

= E[‖k̂(y)− x‖2
X] + E[‖x − E[x |y ]‖2

X]

It differs from the target functional that is given in Theorem (2.24) only by the constant

summand E[‖x − E[x |y ]‖2
X]. Therefore, the solutions of the minimisation problems are

equivalent.

Moreover, [14] classifies the Bayes Linear estimator as a best linear unbiased estimator

(BLUE), i.e. the estimator is linear with respect to the data and unbiased. Furthermore,

its variance is minimal compared with all other linear estimators. (cf. [44, p. 189])

(2.27) Corollary. Let Assumptions (2.1) hold. The Bayes Linear estimator xBLE
y=· of x given

y = · is BLUE. •

Proof. The BLE is unbiased, since

E[xBLE
y ] = E

[
E[x ] + Cov(x, y)Cov(y)−1(y − E[y ])

]
= E[x ] + Cov(x, y)Cov(y)−1(E[y ]− E[y ]) = E[x ].

It is linear by definition and its variance is minimal by Theorem (2.24).

Part of the statement of Theorem (2.24) is that the elements of the set of affine functions

K are square integrable with respect to y#P. In particular, this means that the BLE equals

the conditional expectation in the best case, but cannot be a better approximation (cf. [8,

Corollary 3.5]):

(2.28) Corollary. Let Assumptions (2.1) hold. Then,

E[‖E[x |y ]− x‖2
X] ≤ E[‖xBLE

y − x‖2
X]. •

This corollary is applied in Example (2.32) and implicitly in Theorem (2.31). Before moving

on to that, a further Bayes Linear based estimator is introduced.
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In addition to the conditional expectation of x given y = ·, the conditional covariance

operator of x given y = · can be a useful object to describe the conditional distribution

x#P(·|y = ·). Let d1, d2 ∈ D, respectively {1, ..., k}. The conditional covariance of x(d1)

and x(d2) given y = · is defined by

(2.29)

Cov(x(d1), x(d2)|y = ·) := E [(x(d1)− E[x(d1)|y = ·])(x(d2)− E[x(d2)|y = ·])|y = ·] ,

and a covariance operator in higher or infinite dimensions can be defined analogously.

Goldstein and Wooff [21, Definition 3.8] propose a straightforward Bayes Linear method

to approximate the conditional covariance. It is the result of a Bayes Linear approximation

of the conditional covariance (2.29):

(2.30) Definition. Let Assumptions (2.1) hold, ŷ ∈ Y and d1, d2 ∈ D respectively

{1, ..., k}. The Bayes Linear covariance of x(d1) and x(d2) given y = ŷ is defined by

Cov(x(d1), x(d2))BLE
y=ŷ := Cov(x(d1), x(d2))− Cov(x(d1), y)Cov(y)−1Cov(y , x(d2)). •

Bayes Linear estimator and Bayes Linear covariance are specifically useful in the case

where (x, y) is Gaussian. Conditional and Bayes Linear mean and covariance estimates

are equivalent in this setting:

(2.31) Theorem. Let Assumptions (2.1) hold. Furthermore, let X := Rk , mx ∈ X,

my ∈ Y , m = (mx , my)T and C ∈ R(M+k)×(M+k) be a strictly positive definite and symmetric

matrix, given by

C :=

(
Cx Cxy

CTxy Cy

)
,

where Cx ∈ Rk×k , Cxy ∈ Rk×M and Cy ∈ RM×M. Moreover, assume that the random

variables x, y are jointly Gaussian distributed (x, y) ∼ N(m,C). Then, xBLE
y=· = E[x |y = ·]

and Cov(x)BLE
y=· = Cov(x |y = ·) (y#P-a.s.). •

Proof. The conditional expectation and conditional covariance operator are well-known in

this given setting and discussed in several textbooks (cf. e.g. [48, p. 289] or [24, p. 171]).

Therefore they are not rigorously derived here but stated below.

E[x |y = ŷ ] = mx + CxyC
−1
y (ŷ −my) = E[x ] + Cov(x, y)Cov(y)−1(ŷ − E[y ]) = xBLE

y=ŷ ,

Cov(x |y = ŷ) = Cx − CxyC−1
y CTxy = Cov(x)− Cov(x, y)Cov(y)−1Cov(y , x) = Cov(x)BLE

y=ŷ ,

where the equations hold for y#P-almost all ŷ ∈ Y
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Hence, another way to interpret the Bayes Linear based mean and covariance estimators, as

given in Definitions (2.19) and (2.30), is given in Theorem (2.31) above, by showing that

the Bayes Linear approximation is almost surely equivalent to the conditional expectation in

a Gaussian distributed case. Bayes Linear in a more general class of problems is equivalent

to using a Gaussian-type formula in a non-Gaussian problem. This interpretation is, for

instance, given by Schillings and Stuart [43, p. 4].

2.3.2. Examples

Examples (2.14) and (2.15) are considered again here. Bayes Linear in the setting of

Example (2.17) is implicitly already studied in Theorem (2.31).

(2.32) Example (Example (2.14) revisited). The conditional expectation is given by

E[x |z = ẑ ] = 1
4
1{ẑ=0} + 3

4
1{ẑ=1} = 1

4
+ 1

2
ẑ ,

where ẑ ∈ {0, 1} which is clearly an affine function. Corollary (2.28) implies that E[x |z =

·] = xBLE
z=· (z#P-a.s.), whenever E[x |z = ·] is z#P-a.s. affine. Deriving the BLE without

referring to Example (2.14) shows the convenience gained from its application:

E[x ] = E[z ] = 1
2
, Var(z) = 1

2
− 1

4
= 1

4
,

Cov(x, z) = E[xz ]− E[x ]E[z ] = E[x1x≥ 1
2
]− 1

4
= 3

8
− 1

4
= 1

8
,

so that

xBLE
z=ẑ = E[x ] + Cov(x, z)Var(z)−1(ẑ − E[z ]) = 1

2
+ 4 · 1

8
(ẑ − 1

2
) = 1

4
+ 1

2
ẑ . •

(2.33) Example (Example (2.15) revisited). The conditional expectation is given by

E[x |z = ẑ ] =
E[1{z=ẑ}x ]

P(z = ẑ)
= 2n

∫ (ẑ+1)/2n

ẑ/2n
exp(θ)dθ = 2n[exp( ẑ+1

2n
)− exp( ẑ

2n
)],

which is clearly a non-linear function whenever n > 1. Hence, the parameters of the BLE
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have to be derived separately:

E[x ] =

∫
[0,1]

exp(θ)dθ = exp(1)− exp(0) = e− 1,

E[z ] = E

[
2n−1∑
l=0

l1( l
2n
, l+1

2n
]

]
=

2n−1∑
l=0

lP(( l
2n
, l+1

2n
]) =

1

2n

2n−1∑
l=0

l =
2n(2n − 1)

2n+1
= 2n−1 − 2−1,

E[z2] = E

[
2n−1∑
l=0

l21( l
2n
, l+1

2n
]

]
=

2n−1∑
l=0

l2P(( l
2n
, l+1

2n
]) =

1

2n

2n−1∑
l=0

l2 = 1
3

22n − 2n−1 + 1
6
,

Var(z) = 1
3

22n − 2n−1 + 1
6
− (2n−1 − 2−1)2 = 1

12
22n − 1

12
,

E[xz ] =

∫ (2n−1∑
l=0

l1( l
2n
, l+1

2n
](θ)

)
exp(θ)dP(θ) =

2n−1∑
l=0

l

∫
( l

2n
, l+1

2n
]

exp(θ)dP(θ)

=

2n−1∑
l=0

l [exp( l+1
2n

)− exp( l
2n

)],

Cov(x, z) =

2n−1∑
l=0

l [exp( l+1
2n

)− exp( l
2n

)]− (e− 1)(2n−1 − 2−1).

Thus, the Bayes Linear Estimator of x given z = ẑ is given by

xBLE
z=ẑ = (e− 1) +

(∑2n−1
l=0 l [exp( l+1

2n
)− exp( l

2n
)]
)
− (e− 1)(2n−1 − 2−1)

1
12

22n − 1
12

(ẑ − 2n−1 + 2−1).

In Figure 3, Bayes Linear estimations are compared with Taylor approximations of x and

conditional expectations of x . A first order Taylor approximation and the Bayes Linear

estimations are two different ways to linearise x = exp. The Taylor approximation retains

the smoothness of x and is a good (local) approximation in the neighbourhood of some

specific point (in this case 0). The Bayes linearisation does not necessarily retain the

smoothness. The domain Θ′ = im(z) of xBLE
z=· is finite in the given setting and the BLE

is not constant, but piecewise constant. However, xBLE
z is globally optimal and allows

approximate integration on any F ∈ σ(z). These subsets fulfil the Radon-Nikodym-

equation in Definition (2.5) of the conditional expectation of x given z , so integration

on these subsets of the conditional expectation is exact, and the BLE is the best linear

approximation of the conditional expectation of x given z . (cf. Corollary (2.26)) •
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(a) Taylor approximations
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(b) Conditional expectations
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(c) Bayes Linear estimations

Figure 3 – Conditional expectations, Bayes Linear estimations and Taylor approximations of

exp as considered in Examples (2.15) and (2.33).

2.4. Bayes Linear Applied to Inverse Problems

2.4.1. Goldstein’s Approach

Michael Goldstein and various collaborators [9], [20], [49] have been successfully applying

Bayes Linear methods to solve both finite dimensional Bayesian inverse problems and

Bayesian history matching problems. In the latter, one is interested in intervals containing

the true parameters. This can be seen as a reduction of the finite dimensional parameter

space, rather than an estimation of the parameters themselves. This report is mostly

concerned with applications of Bayes Linear methods that avoid or prevent a (typically

expensive) fully Bayesian analysis of the given inverse problems. In contrast to Goldstein

who uses Bayes Linear techniques to enable a fully Bayesian analysis. His method is briefly

introduced here to provide a more general picture of Bayes Linear approaches to inverse

problems, before proceeding to the main focus of this report. A thorough presentation of

Goldstein’s approach is given by him and Rougier in [20].

Given the inverse problem setting

y = O ◦ G(u) + η,
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as first introduced in Subsection 1.1.2, and evaluations Ĝ = (G(u(1)), ..., G(u(J))) of the

model G with respect to an ensemble of input parameters û = (u(1), ..., u(J)). In [9], not

only do the parameters vary in the set of evaluations, but also the precision, i.e. the spatial

mesh width, of the evaluation of the model G. The evaluations (û, Ĝ) are then used to

construct an emulator. An emulator is a function f , less complex than G, with domain X

depending on a vector of parameters v chosen such that f ≈ G or f ≈ G = O ◦ G. This

parameter estimation concerning v is just another (noise free) inverse problem

(
G(u(1)), ..., G(u(J))

)
=
(
f (u(1), v), ..., f (u(J), v)

)
,

respectively (
G(u(1)), ...,G(u(J))

)
=
(
f (u(1), v), ..., f (u(J), v)

)
,

which is approached using Bayes Linear (or a fully Bayesian method). The emulator f is

then evaluated instead of G resp. G to solve the inverse or history matching problem in a

fully Bayesian manner.

2.4.2. Analytical Bayes Linear Approach

Consider the Bayesian inverse problem setting as described in Subsection 1.1.2. The Bayes

Linear estimator is now applied to approximate the conditional expectation of u given that

G(u) + η = y . The considered assumptions are repeated below:

(2.34) Assumptions. Let X be the parameter space, Y the data space and G : X → Y be

a continuous operator. The unknown parameter u ∈ X is a random variable distributed

according to µ0. The noise η ∈ Y is also a random variable, with η#P = N(0,Γ) =: R and

Γ ∈ RM×M is a symmetric and strictly positive definite matrix. η and u are independent.

Furthermore, the operator G is chosen such that G(u) + η ∈ Y is square integrable. The

given data is y ∈ Y . •

The inverse problems considered within this subsection are contrived in the respect that

the BLE can be derived analytically. Example (2.18), which focuses on the linear inverse

problem, is now reconsidered.

(2.35) Example (Example (2.18) revisited). Let u ∼ µ0 = N(m0, C0) be an X-valued

random variable. The operator G : X → Y is linear and continuous. The conditional

expectation of u given Gu + η = y is

E[u|Gu + η = y ] = m0 + C0G∗(GC0G∗ + Γ)−1(y − Gm0),
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which is linear with respect to y . In this case, Corollary (2.28) implies that

E[u|Gu + η = ·] = uBLE
G(u)+η=·

(
(Gu + η)#P-a.s.

)
.

Furthermore, the BLE is derived below without considering Corollary (2.28). (cf. Example

(2.32))

E[u] = m0,

E[Gu + η] = E[Gu] = Gm0,

Cov(u,Gu + η) = Cov(u,Gu) + Cov(u, η) = Cov(u,Gu)

= E[(u −m0)⊗ (G(u −m0))] = C0G∗,

Cov(Gu + η) = Cov(Gu) + Γ = E[G(u −m0)⊗ G(u −m0)] + Γ

= GC0G∗ + Γ

Numerical experiments in Chapter 5 compare the analytical Bayes Linear solution of the

linear inverse problem with a numerical solution given by the Ensemble Kalman Filter both

with and without Bayes Linear line search. These methods are introduced in the Chapters

3 and 4. •

The second inverse problem considered here is a finite dimensional nonlinear inverse prob-

lem, which is similarly given in [46, Example 2.2]. Before considering the problem in the

more general high-dimensional case, the problem is presented in one dimension.

(2.36) Example (Cubic inverse problem in 1D). Let Assumptions (2.34) hold, X := Y :=

R and G : X → Y be given by

(2.37) v 7→ G(v) = v 3.

The prior distribution of u is given by µ0 = N(m0, c
2
0 ), for some c2

0 > 0. The parameters

of the BLE can be derived using standard results concerning moments of the univariate

Gaussian distribution (or cf. e.g. [29]):

E[u] = m0,

E[G(u)] = E[u3] = m3
0 + 3m0c

2
0 ,

Cov(u,G(u)) = E[u4]− E[u]E[u3] = m4
0 + 6m2

0c
2
0 + 3c4

0 −m4
0 − 3m2

0c
2
0 = 3m2

0c
2
0 + 3c4

0 ,

Var(G(u)) = E[u6]− E[u3]2 = m6
0 + 15m4

0c
2
0 + 45m2

0c
4
0 + 15c6

0 − (m3
0 + 3m0c

2
0 )2

= 9m4
0c

2
0 + 45m2

0c
4
0 + 15c6

0 .
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Then,

uBLE
G(u)+η=y = m0 +

m2
0c

2
0 + c4

0

3m4
0c

2
0 + 15m2

0c
4
0 + 5c6

0 + 1
3

Γ
(y − 3c2

0m0 −m3
0),

where 3m4
0c

2
0 + 15m2

0c
4
0 + 5c6

0 + 1
3

Γ > 0, since c0 ≥ 0 and Γ > 0. (cf. Remark (2.42)).

Particularly interesting is the case where m0 = 0. In this case:

uBLE
G(u)+η=y =

c4
0

5c6
0 + 1

3
Γ
y . •

Proceeding to the multidimensional analogue of example (2.36), one is particularly inter-

ested in the situation where the components of u are not independent. Including this

case requires the results of Isserlis’ theorem [29], which addresses the derivation of (prod-

uct) moments of a multivariate normal distribution. Although Isserlis’ theorem provides

a method to derive any (product) moment of the multivariate normal distribution, the

Lemma below only presents the required ones.

(2.38) Lemma (Isserlis 1918 [29]). Let Assumptions (2.34) hold, X := R2 and (x1, x2) ∈
X , (x1, x2) ∼ N(0, C) be a Gaussian random vector, where C ∈ R2×2 is a symmetric and

strictly positive definite matrix. Then,

E[x1x
3
2 ] = 3C1,2C2,2

E[x3
1 x

3
2 ] = 9C1,2C1,1C2,2 + 6C3

1,2. •

Proof. [29, p. 139].

Based on this result, the multivariate generalisation of Example (2.36) is studied next.

(2.39) Example (Cubic inverse problem). Let Assumptions (2.34) hold, X := Y := Rk

and G : X → Y be given by
v1

v2

...

vk

 7→ G(v1, v2, ..., vk) =


v 3

1

v 3
2
...

v 3
k

 .

The prior distribution of u is given by µ0 = N(0, C0), for some symmetric and strictly

positive definite matrix C0 ∈ Rk×k . The parameters of the BLE are derived using Lemma
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2. Bayes Linear Statistics

(2.38). Let i , j ∈ {1, ..., k}. Then,

E[ui ] = 0,

E[G(u)i ] = E[u3
i ] = 0,

Cov(ui ,G(u)j) = E[uiu
3
j ] = 3(C0)i ,j(C0)j,j ,

Cov(G(u)i ,G(u)j) = E[u3
i u

3
j ] = 9(C0)i ,j(C0)i ,i(C0)j,j + 6(C0)3

i ,j .

The BLE is then derived using the standard formula, which is given in Definition (2.19):

uBLE
G(u)+η=y = [(C0)i ,j(C0)j,j ]1≤i ,j≤k ·

[
3(C0)i ,j(C0)i ,i(C0)j,j + 2(C0)3

i ,j + 1
3

Γi ,j
]−1

1≤i ,j≤k · y ,

where
[
3(C0)i ,j(C0)i ,i(C0)j,j + 2(C0)3

i ,j + 1
3

Γi ,j
]

1≤i ,j≤k is indeed invertible (cf. Remark (2.42)).

The analytical Bayes Linear solution of the cubic inverse problem is also compared with

a numerical solution given by the Ensemble Kalman Filter with and without Bayes Linear

line search and a Monte Carlo approximation of E[u|G(u) + η = y ] using autonormalised

importance sampling as given in [1, p. 7] in Chapter 5. •

2.4.3. Bayes Linear Approach with Simulated Parameters

The forward response operator G is typically not given in a closed form and it is rarely

possible to actually derive expected values, variances and covariances of G(u) analytically

(u ∼ µ0). However, the parameters of the BLE can be estimated using a Monte-Carlo-

Simulation.

Let an ensemble of J ∈ N samples uJ :=
(
u(1), ..., u(J)

)
∈ X J, uJ ∼ µ⊗J0 and evaluations

GJ :=
(
G(u(1)), ...,G(u(J))

)
be given. These evaluations GJ are then independent and

identically distributed according to G(u)#P. Under Assumptions (2.34), the strong law of
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large numbers (SLLN) implies the P-a.s. convergence of the following estimators:

uJ =
1

J

J∑
j=1

u(j) P-a.s.−→ E[u],

G(u)J =
1

J

J∑
j=1

G(u(j))
P-a.s.−→ E[G(u)],

C̃ovJ(u,G(u)) =
1

J − 1

J∑
j=1

(u(j) − uJ)⊗ (G(u(j))− G(u(j))J)
P-a.s.−→ Cov(u,G(u)),

C̃ovJ(G(u)) =
1

J − 1

J∑
j=1

(G(u(j))− G(u(·))J)⊗ (G(u(j))− G(u(·))J)
P-a.s.−→ Cov(G(u)),

as J → ∞. The SLLN in a finite dimensional setting is discussed in [2, 6.2.5] and the

infinite dimensional case is given in [7, Theorem 2.4]. Moreover, the convergence of the

covariance operators is discussed in [44, p. 373].

(2.40) Remark. In Definition (2.19), the covariances are given by the (non-corrected)

empirical covariance operator ĈovJ(x) =
(
J−1
J

)
C̃ovJ(x) (x ∼ µ0), which reflects the

covariance of the empirical distribution µJ0 = 1
J

∑J
j=1 δx(j), (where (x (1), ..., x (J)) ∼ µ⊗J0 ):

xJ =
1

J

J∑
j=1

x (j) =

∫
ξdµJ0(ξ),

ĈovJ(x) =
1

J

J∑
j=1

(x (j) − xJ)⊗ (x (j) − xJ) =

∫
(ξ − xJ)⊗ (ξ − xJ)dµJ0(ξ).

Although ĈovJ(x) is a biased estimator, it is preferred throughout this report over the

unbiased estimator C̃ovJ(x) = 1
J−1

∑J
j=1(x (j) − xJ) ⊗ (x (j) − xJ). This is because the

number of particles that are used to estimate the parameters is typically relatively small.

Thus, a correct covariance estimator of the empirical distribution appears to be more

important than the correct convergence. Furthermore, the sample covariance ĈovJ(x) is

equal to the maximum likelihood estimate of the covariance operator of a Gaussian random

variable (cf. [24, p. 184ff]). •

An introduction to Monte Carlo methods is given in the textbook of Robert and Casella

[42]. Other relevant Monte Carlo techniques are discussed in [1], [10] and [48].

The Bayes Linear estimator for inverse problems with simulated parameters is then given

by

uB̂LE,J
G(u)+η=y := uJ + ĈovJ(u,G(u))(ĈovJ(G(u)) + Γ)−1(y − G(u)J).(2.41)
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3. The Ensemble Kalman Filter

This definition is slightly inconsistent with the notation given in Definition (2.19). However,

since the covariance operator Γ of the noise is known in the context of Bayesian inverse

problems and u, η are independent by assumption, an estimation is not necessary.

(2.42) Remark. Assumptions (2.34) propose a strictly positive definite noise covariance

operator Γ. Furthermore, covariance matrices are generally positive semidefinite, implying

that the sample covariances are also positive semidefinite (cf. Remark (2.40)). Hence,

[ĈovJ(G(u)) + Γ] resp. [Cov(G(u)) + Γ] is strictly positive definite and invertible. Thus,

one can in fact substitute the Moore-Penrose pseudo inverse with the standard inverse.

(cf. Remark (2.22)) •

3. The Ensemble Kalman Filter

The underlying assumption of the Bayes Linear estimator is that the conditional expecta-

tion of u given G(u) + η = y can be well approximated by a linear function of y . This

assumption is for the most part not realistic. In fact, numerical results in Chapter 5 show

that pure Bayes Linear estimations of u are quite poor in any of the considered non-linear

inverse problems.

Let the forward response operator G be non-linear and assume that the Bayes Linear es-

timator and the conditional expectation of u given G(u) + η = y are not a.s. equivalent.

Since these estimators are not equivalent, the BLE is not optimal in L2 (unlike the condi-

tional expectation) and could be improved upon by simply incorporating an (in some way)

adjusted version of the data set again using a further Bayes Linear estimation. The subse-

quent estimate is then possibly also not optimal and this idea can be repeated sequentially.

However, the BLE is just a point estimate in X, rather than a random variable in X or

a probability distribution on X, and data incorporation using (Bayes’ rule) or similar ap-

proaches is not possible. Thus, one has to consider an approximate posterior distribution

which has the BLE as posterior mean. These posterior distributions can be approximated

given an ensemble of particles and their empirical probability distribution. The probability

distributions can then be updated using a Bayes Linear type formula to update the particles

(cf. Theorem (3.8)). This proposed update strategy is well-known, without necessarily

involving a Bayes Linear interpretation, and referred to as the Ensemble Kalman Filter for

inverse problems. This is proposed in [28] and its connection to Bayes Linear is discussed

specifically in [14] and [37].

The Ensemble Kalman Filter and variations of it have been successfully applied to various

inverse problems. (cf. [14], [26], [27], [43], [28]). Even though the ensemble does typically
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3. The Ensemble Kalman Filter

not provide a good approximation of the true posterior distribution, the posterior mean

approximations are generally good (cf. [14], [43]). Furthermore, the Ensemble Kalman

Filter works well with small ensemble sizes (cf. [43]) and is thus a computationally cheap

alternative to MCMC, albeit only if one is interested in an estimate of the posterior mean,

rather than a posterior distribution.

In the following, the Ensemble Kalman Filter is motivated in the discrete data assimilation

setting of [33, Section 2.1] as it is originally proposed by Evensen [15], [16] and its Bayes

Linear interpretation given in [14], [37]. Thereafter, in section 3.2, the Ensemble Kalman

Filter for inverse problems is derived as it is done (historically) in [28], based on the

discrete data assimilation method. The report then proceeds to another version of the

Ensemble Kalman Filter that uses the Ensemble Kalman/BLE update to approximate a

Sequential Monte Carlo method. This Sequential Monte Carlo version is presented in [43]

and considered throughout the remaining chapters of the report.

3.1. Filtering in Data Assimilation and the Ensemble Kalman Filter

(3.1) Definition (Filtering in discrete data assimilation). Let Assumptions (2.34) hold,

Ψ : X → X be a continuous operator and H : X → Y be a linear operator.

Consider the sequence of random variables (vn : n ∈ N) ∈ XN given by the dynamical

system

(3.2) vn = Ψ(vn−1) + ξn−1 (n ∈ N),

where v0 ∼ N(m0, C0), (ξn : n ∈ N∪{0}) ∼ N(0,Σ)⊗N∪{0} and Σ : X → X is a covariance

operator, and the data (yn : n ∈ N) ∈ Y N given by realisations of the data stream

(3.3) yn = Hvn + ηn (n ∈ N),

where (ηn : n ∈ N) ∼ N(0,Γ)⊗N,

Filtering problem: Let Yn := (y1, ..., yn) (n ∈ N), Y0 = (), Hn = (Hv1 + η1, ..., Hvn + ηn)

(n ∈ N), H0 = () and P (X) := {µ : µ is a probability measure on X}.

A filter is a map

F : P (X)→ P (X), P(vn−1 ∈ ·|Hn−1 = Yn−1) 7→ P(vn ∈ ·|Hn = Yn) (n ∈ N)(3.4)
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3. The Ensemble Kalman Filter

This filtering procedure is divided into two consecutive steps: Prediction and analysis.

These steps are given by

P(vn−1 ∈ ·|Hn−1 = Yn−1) 7→ P(vn ∈ ·|Hn−1 = Yn−1),(Prediction)

P(vn ∈ ·|Hn−1 = Yn−1) 7→ P(vn ∈ ·|Hn = Yn).(Analysis)

•

The filtering problem can be solved explicitly given a linear operator Ψ : X → X. This

filter is called Kalman Filter and sketchily presented in the example below. A rigorous

derivation is given in [33, Section 4.1].

(3.5) Example. Let X := Rk and Ψ : X → X be a linear operator given by some matrix

A ∈ Rk×k . Furthermore, assume that Γ, the covariance operator of the noise ηn (n ∈ N)

is strictly positive definite.

Since Ψ is a linear operator and v0 is Gaussian, all elements of (vn : n ∈ N) are also

Gaussian distributed. Hence, the conditional distributions are uniquely defined by the

conditional means and conditional covariances. Set P(vn ∈ ·|Hn−1 = Yn−1) =: N(m̂n, Ĉn)

and P(vn ∈ ·|Hn = Yn) =: N(mn, Cn) (n ∈ N).

The distribution of the initial value v0 is defined to be P(v0 ∈ ·) = N(m0, C0). Since Ψ is

linear and vn, ξn, ηn are Gaussian (n ∈ N), the conditional expectation and covariance of vn

given Hn = Yn can be derived using Theorem (2.31). As an example, the derivation of the

prediction and analysis step from n − 1 to n is sketched below. The steps are presented

as maps (mn−1, Cn−1) 7→ (m̂n, Ĉn) and (m̂n, Ĉn) 7→ (mn, Cn).

Prediction:

m̂n = E[vn|Hn−1 = Yn−1] = E[Avn−1 + ξn−1|Hn−1 = Yn−1]

= E[Avn−1|Hn−1 = Yn−1] + E[ξn−1] = Amn−1,

Ĉn = Cov(vn|Hn−1 = Yn−1) = ACov(vn−1|Hn−1 = Yn−1)AT + Σ = ACn−1A
T + Σ,
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3. The Ensemble Kalman Filter

Analysis:

mn = E[vn|Hn = Yn] = E[vn|Hn−1 = Yn−1, Hvn + ηn = yn]

= E[vn|Hn−1 = Yn−1] + Cov(vn, Hvn|Hn−1 = Yn−1)

× (Cov(Hvn|Hn−1 = Yn−1) + Γ)−1(Yn −HE[vn|Hn−1 = Yn−1])

= m̂n + ĈnHT (HĈnHT + Γ)−1(Yn −Hm̂n)

= ĈnHT (HĈnHT + Γ)−1Yn + (I − ĈnHT (HĈnHT + Γ)−1H)m̂n

Cn = Cov(vn|Hn = Yn) = Cov(vn|Hn−1 = Yn−1, Hvn + ηn = yn)

= Cov(vn|Hn−1 = Yn−1)− Cov(vn, Hvn|Hn−1 = Yn−1)

× (Cov(Hvn|Hn−1 = Yn−1) + Γ)−1Cov(Hvn, vn|Hn−1 = Yn−1)

= Ĉn − ĈnHT (HĈnHT + Γ)−1HĈn

=
(
I − ĈnHT (HĈnHT + Γ)−1H

)
Ĉn. •

The Ensemble Kalman Filter is a generalisation of the Kalman Filter. This generalisation

is equipped to work with non-linear operators Ψ : X → X. Given such a non-linear Ψ,

the elements of (vn : n ∈ N) are, in contrast to the linear case, no longer Gaussian

distributed. This means, that updating the mean and covariance operator is insufficient.

The Ensemble Kalman Filter addresses this issue by approximating the distribution of vn

through an ensemble of particles. Updates are then applied to this ensemble as opposed

to a mean and covariance operator. Apart from that difference, the derivation of the

Ensemble Kalman Filter is similar to the derivation of the Kalman Filter, which is given

above in Example (3.5).

(3.6) Definition (Ensemble Kalman Filter). Let J ∈ N be the number of elements con-

tained in the ensemble that is used to approximate the (conditional) probability distribu-

tions that are considered in a filtering problem and n ∈ N ∪ {0} the current step. The

ensemble of particles is given by (v
(j)
n : j ∈ {1, ..., J}) ∈ X J. Moreover, the initial ensemble

(v
(j)
0 : j ∈ {1, ..., J}) is distributed according to the distribution of the initial element of

the sequence, (v
(j)
0 : j ∈ {1, ..., J}) ∼ N(m0, C0)⊗J. The Ensemble Kalman Filter is given

by the following prediction and analysis step.
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Prediction:

v̂
(j)
n+1 := Ψ(v (j)

n ) + ξ(j)
n (j ∈ {1, ..., J}, (ξ(j)

n : j ∈ {1, ..., J}) ∼ N(0,Σ)⊗J),

m̂n+1 := 1
J

J∑
j=1

v̂
(j)
n+1,

Ĉn+1 := 1
J

J∑
j=1

(v̂
(j)
n+1 − m̂n+1)⊗ (v̂

(j)
n+1 − m̂n+1).

Analysis:

Kn+1 := Ĉn+1H
T (HĈn+1H

T + Γ)−1,(3.7)

y
(j)
n+1 := yn+1 + η

(j)
n+1 (j ∈ {1, ..., J}, (η

(j)
n+1 : j ∈ {1, ..., J}) ∼ N(0,Γ)⊗J),

v
(j)
n+1 := (I −Kn+1H)v̂

(j)
n+1 +Kn+1y

(j)
n+1 (j ∈ {1, ..., J}).

The operator Kn+1 is called Kalman gain. A filter, as it is defined in (3.1), is actually a

map defined on the set of probability distributions. As motivated above, these distributions

are approximated by

P(vn ∈ ·|Hn = Yn) ≈ µJn = 1
J

J∑
j=1

δ
v

(j)
n
,

P(vn+1 ∈ ·|Hn = Yn) ≈ µ̂Jn = 1
J

J∑
j=1

δ
v̂

(j)
n
. •

The Ensemble Kalman Filter is closely related to the Bayes Linear estimator with simulated

parameters, which is discussed in Subsection 2.4.3. This fact is discussed in [14, 4.2] and

[37, p. 271], and also in the following theorem.

(3.8) Theorem. Consider the setting given in Definition (3.6). Let j ∈ {1, ..., J}, n ∈ N

and Kn+1 be the Kalman gain as it is defined in Equation (3.7). Then,

Kn+1(y
(j)
n+1 −Hv̂

(j)
n+1) = −(vn+1)B̂LE,J

Hvn+1+ηn+1=Hv̂
(j)
n+1

+ (vn+1)B̂LE,J

Hvn+1+ηn+1=y
(j)
n+1

. •

Proof. Let ŷ ∈ Y . Then,

(vn+1)B̂LE,J
Hvn+1+ηn+1=ŷ = [v

(·)
n+1]

J
+ ĈovJ(vn+1, Hvn+1 + ηn+1)(ĈovJ(Hvn+1) + Γ)−1(ŷ −H[v

(·)
n+1]

J
)

= [v
(·)
n+1]

J
+ ĈovJ(vn+1)H∗(HĈovJ(vn+1)H∗ + Γ)−1(ŷ −H[v

(·)
n+1]

J
)

= [v
(·)
n+1]

J
+ Ĉn+1H

∗(HĈn+1H
∗ + Γ)−1(ŷ −H[v

(·)
n+1]

J
).
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Thus,

−(vn+1)B̂LE,J

Hvn+1+ηn+1=Hv̂
(j)
n+1

+ (vn+1)B̂LE,J

Hvn+1+ηn+1=y
(j)
n+1

= −[v
(·)
n+1]

J
− Ĉn+1H

∗(HĈn+1H
∗ + Γ)−1(Hv̂

(j)
n+1 −H[v

(·)
n+1]

J
)

+ [v
(·)
n+1]

J
+ Ĉn+1H

∗(HĈn+1H
∗ + Γ)−1(y

(j)
n+1 −H[v

(·)
n+1]

J
)

= −Ĉn+1H
∗(HĈn+1H

∗ + Γ)−1Hv̂
(j)
n+1 + Ĉn+1H

∗(HĈn+1H
∗ + Γ)−1y

(j)
n+1

= Ĉn+1H
∗(HĈn+1H

∗ + Γ)−1(y
(j)
n+1 −Hv̂

(j)
n+1) = Kn+1(y

(j)
n+1 −Hv̂

(j)
n+1).

Hence, the analysis step can be interpreted as a correction of the predicted v̂
(j)
n+1. The B̂LE

reflects the conditional expectation on vn+1 given the prediction Hv̂
(j)
n+1, respectively the

data y
(j)
n+1. This correction can then be seen as a substitution of the information provided

by the possibly wrong prediction from the information given by the indeed correct data.

3.2. The Ensemble Kalman Filter for Inverse Problems

This section considers two different but similar ways to apply the Ensemble Kalman Filter

to inverse problems. The version from [28], which is based on an auxiliary data assimilation

problem, is introduced before moving on to the more relevant method that is proposed by

[43] as an approximate Sequential Monte Carlo (SMC) method.

3.2.1. From Data Assimilation to Inverse Problems

Consider the data assimilation setting given in Definition (3.1) and Assumptions (2.34).

Let the operator Ψ : X ⊕ Y → X ⊕ Y be given by

(3.9)

(
u

z

)
7→ Ψ(u, z) =

(
u

G(u)

)
.

Furthermore, let H := (0, I) : X ⊕ Y → Y be the projection mapping(
u

G(u)

)
7→ (0, I)

(
u

G(u)

)
= G(u).

The initial ensemble is given by (u
(j)
0 : j ∈ {1, ..., J}) ∼ µ⊗J0 . The dynamical system

induced by Ψ is deterministic, i.e. Σ = 0.

(3.10) Remark. X is either given by L2(D,BD,Leb(k)) or Rk . The main assump-
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tions and therefore the techniques of Section 3.1 do not cover the case that X =

L2(D,BD,Leb(k)) ⊕ Y . However, a generalisation of the filtering methods from Sec-

tion 3.1 taking X = L2(D,BD,Leb(k))⊕ Y into account is straightforward and therefore

not discussed. •

Apply the Ensemble Kalman filter to solve the discrete data assimilation problem presented

above. Let n ∈ N ∪ {0}. The prediction step is given by

v̂
(j)
n+1 := Ψ(u(j)

n , z
(j)
n ) =

(
u

(j)
n

G(u
(j)
n )

)
(j ∈ {1, ..., J}),

m̂n+1 := 1
J

J∑
j=1

v̂
(j)
n+1 := 1

J

J∑
j=1

(
u

(j)
n

G(u
(j)
n )

)
,

Ĉn+1 := 1
J

J∑
j=1

(v̂
(j)
n+1 − m̂n+1)⊗ (v̂

(j)
n+1 − m̂n+1)

= 1
J

J∑
j=1

((
u

(j)
n

G(u
(j)
n )

)
− m̂n+1

)
⊗

((
u

(j)
n

G(u
(j)
n )

)
− m̂n+1

)
.

= ĈovJ

((
un

G(un)

))

The analysis step based on this prediction is then:

Kn+1 := Ĉn+1H
T (HĈn+1H

T + Γ)−1,

:= ĈovJ

((
un

G(un)

)
, (0, I)

(
un

G(un)

))[
ĈovJ

(
(0, I)

(
un

G(un)

))
+ Γ

]−1

= ĈovJ

((
un

G(un)

)
,G(un)

)[
ĈovJ (G(un)) + Γ

]−1

,

y
(j)
n+1 := y + η

(j)
n+1 (j ∈ {1, ..., J}, (η

(j)
n+1 : j ∈ {1, ..., J}) ∼ N(0,Γ)⊗J),

v
(j)
n+1 =

(
u

(j)
n+1

z
(j)
n+1

)
,

u
(j)
n+1 := ((I, 0)− (I, 0)Kn+1H)v̂

(j)
n+1 +Kn+1y

(j)
n+1

= u(j)
n + ĈovJ(un,G(un))

[
ĈovJ (G(un)) + Γ

]−1

(y
(j)
n+1 − G(u(j)

n )) (j ∈ {1, ..., J}),

z
(j)
n+1 := ((0, I)− (0, I)Kn+1H)v̂

(j)
n+1 +Kn+1y

(j)
n+1

= G(u(j)
n ) + ĈovJ(G(un))

[
ĈovJ (G(un)) + Γ

]−1

(y
(j)
n+1 − G(u(j)

n )) (j ∈ {1, ..., J}).

Updating the second component z ∈ Y of the vector describing the dynamical system is
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not necessary, since Ψ is constant with respect to z ∈ Y . Hence, the Ensemble Kalman

Filter for Inverse Problems can be defined in the following way.

(3.11) Definition (Ensemble Kalman Filter for Inverse Problems: Version 1). Let As-

sumptions (2.34) hold and J ∈ N. The Ensemble Kalman Filter for Inverse Problems is

given by the initial ensemble (u
(j)
0 : j ∈ {1, ..., J}) ∈ X J with (u

(j)
0 : j ∈ {1, ..., J}) ∼ µ⊗J0

and the ensemble update for all n ∈ N ∪ {0}:

u
(j)
n+1 := u(j)

n + Cupn (Cppn + Γ)−1(y
(j)
n+1 − G(u(j)

n )) (j ∈ {1, ..., J}),(3.12)

y
(j)
n+1 := y + η(j)

n (j ∈ {1, ..., J}, (η(j)
n : j ∈ {1, ..., J}) ∼ N(0,Γ)⊗J)

Cupn := ĈovJ(un,G(un)) = 1
J

J∑
j=1

(u(j)
n − [u

(·)
n ]J)⊗ (G(u(j)

n )− [G(u
(·)
n )]J),

Cppn := ĈovJ (G(un)) = 1
J

J∑
j=1

(G(u(j)
n )− [G(u

(·)
n )]J)⊗ (G(u(j)

n )− [G(u
(·)
n )]J). •

3.2.2. From Sequential Monte Carlo to a Sequential Bayes Linear Strategy

Consider again the general posterior distribution in the Bayesian inverse problem setting.

It is motivated in Subsection 1.1.2 and presented in Theorem (1.8):

µy =
1

Z(y)
exp (−Φ(·; y))µ0,

given that Z(y) :=
∫

exp(−Φ(u; y))dµ0(u) > 0 (y ∈ Y,R-a.s.). Let N ∈ N and h := 1
N

.

Sequential Monte Carlo (SMC) does not sample directly from this posterior distribution,

but uses a finite sequence of probability measures (µn : n ∈ {0, 1, ..., N}), to approach

the posterior distribution stepwise. This sequence members (6= 0, N) act as intermediate

posterior distributions, where the nth one is reached using the (n− 1)th distribution (n ∈
{1, ..., N}) as a prior distribution. I.e. the steps are given recursively by

µn :=
1

Zn(y)
exp (−hΦ(·; y))µn−1 (n ∈ {1, ..., N}),

given that Zn(y) :=
∫

exp (−hΦ(u; y)) dµn−1(u) > 0 (y ∈ Y,R-a.s.). Then, µN = µy .

A general introduction to SMC is given in [13]. Moreover, SMC methods in the Bayesian

inverse problem setting are discussed in [10, 5.3], [30] and briefly also in [43, Chapter 2].

In Section 2.2, the Ensemble Kalman Filter’s update is used to approximately transform µ0

distributed samples into µy distributed samples. This Bayes Linear type update formula,
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also discussed in Theorem (3.8), is here used to successively update the particles’ distri-

bution within the sequence (µn : n ∈ {1, ..., N}), i.e. used to approximately transform µn

distributed samples into µn+1 (n ∈ {0, ..., N − 1}) distributed samples.

The µn-density of the update step is µn-a.s. given by

dµn+1

dµn
(u) ∝ exp (−hΦ(u; y)) = exp

(
−
h

2
‖y − G(u)‖2

Γ−1

)
= exp

(
−

1

2
‖y − G(u)‖2

(h−1Γ)−1

)
.

So the only difference between this µn-density and the µ0-density given in Theorem (1.8)

(Bayes’ rule for inverse problems) is the noise covariance. Therefore, the Bayes Linear type

update from an µn distributed ensemble to an µn+1 distributed ensemble can be defined

as follows below, where just Γ is substituted by h−1Γ.

(3.13) Definition (Ensemble Kalman Filter for Inverse Problems: Version 2). Let As-

sumptions (2.34) hold, N ∈ N and J ∈ N. The Ensemble Kalman Filter for Inverse

Problems (EnKF) is given by the initial ensemble (u
(j)
0 : j ∈ {1, ..., J}) ∈ X J with

(u
(j)
0 : j ∈ {1, ..., J}) ∼ µ⊗J0 and the ensemble update for all n ∈ {0, ..., N − 1}

u
(j)
n+1 := u(j)

n + Cupn (Cppn + h−1Γ)−1(y
(j)
n+1 − G(u(j)

n )) (j ∈ {1, ..., J}),(3.14)

y
(j)
n+1 := y + η

(j)
n+1 (j ∈ {1, ..., J}, (η

(j)
n+1 : j ∈ {1, ..., J}) ∼ N(0, h−1Γ)⊗J)

Cupn := ĈovJ(un,G(un)) = 1
J

J∑
j=1

(u(j)
n − [u

(·)
n ]J)⊗ (G(u(j)

n )− [G(u
(·)
n )]J),

Cppn := ĈovJ (G(un)) = 1
J

J∑
j=1

(G(u(j)
n )− [G(u

(·)
n )]J)⊗ (G(u(j)

n )− [G(u
(·)
n )]J).

The point estimate of the Ensemble Kalman Filter of u given G(u) + η = y is given by

uEnKF,J,N
G(u)+η=y :=

1

J

J∑
j=1

u
(j)
N . •

(3.15) Remark. 1. By the way of construction, this version of the Ensemble Kalman

Filter can be easily interpreted as a sequential version of the Bayes Linear estimator with

simulated parameters, which is discussed in Section 2.4.3.

2. Applying Bayes Linear/EnKF updates rather than doing normal SMC diminishes the

quality of the approximation of the posterior distribution. In fact, the numerical experi-

ments of [14, Chapter 5] show that the ensemble tends to approximate the distribution

badly. However, the sample mean is still a good estimate of the conditional expectation

of u given G(u) + η = y . Thus, the EnKF is treated as a point estimator. (cf. [43, p. 2])
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3. Moreover, a major difference between the EnKF and SMC is that the EnKF particles

traverse the sample space with fixed weight 1
J

, whereas the SMC particles are spatially fixed

but reweighted in every update step. [43, p. 2] states that this second approach tends to

result in an approximate posterior which is only concentrated on very few particles since

the majority of particles have negligible weights (close to 0). In this case, the posterior

distribution is approximated quite badly, which also motivates applying the EnKF in this

situation. •

4. Line Search Strategies for the Ensemble Kalman Filter

The Ensemble Kalman Filter as given in Section 3.2 uses a constant step length h := 1/N

(cf. Definition (3.13)) respectively h := 1 (cf. Definition (3.11)). In numerical non-

linear optimisation, constant step lengths are often problematic: an algorithm that uses

a step length which is too short has to take many steps to reach the optimal point, each

of which is computationally expensive. In contrast, a step length which is too long can

result in an algorithm that cannot converge to a stationary point and might consequently

not even terminate. This problem motivates a dynamical way to choose step lengths. A

brief introduction to line search strategies in numerical non-linear optimisation is given in

Section 4.1, which particularly introduces the Wolfe conditions [50], [51] in a Gradient

descent method. This subsection is mostly based on [38].

Considering the misfit functional of the Ensemble Kalman Filter applied to the linear inverse

problem in Figure 5 (a) raises the following questions.

• Is it necessary to choose a shorter step length for the first steps, where the impact

of the EnKF on the estimate is relatively large?

• Is it possible to choose a longer step length as the optimum is approached? Here, the

impact of the EnKF on the estimate is barely observable. The small steps appear to

overfit the model and longer step lengths would reduce the amount of G-evaluations.

Iglesias [26], [27] proposes a way to regularise the Ensemble Kalman Filter, given Hanke’s

Levenberg-Marquardt condition [23], which is interpreted in this report as a dynamical

choice of step lengths. This approach is summarised in Section 4.2.

Bayes Linear methods are used in Section 4.3 to linearise the target functional in the classi-

cal inverse problem setting to construct a gradient-free Wolfe condition for the Ensemble

Kalman Filter. The Bayes Linear estimator that is used to construct this gradient-free
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Wolfe condition implicitly approximates the conditional expectation of the target func-

tional given that the inverse problem holds. This conditional expectation is also examined

below.

4.1. Line Search in Numerical Non-linear Optimisation

Let X = Rk and f : X → R be a continuously differentiable and convex function that

is bounded below. This section considers the problem of minimising f numerically, i.e.

proposing a finite sequence (x0, ..., xN) ∈ XN approaching the minimum of f , given some

initial point x0 ∈ X.

The method discussed here is the steepest descent method, which is given by the following

recursion

xn+1 = xn − αnpn (n ∈ {1, ..., N}),

where αn > 0 is the length of the step in direction pn = ∇f (xn). This proposed direction

−∇f (xn) is indeed the direction of the steepest descent in point xn. However, the effi-

ciency and convergence of this algorithm is crucially dependent on the step length αn, as

motivated in the introductory text of Chapter 4. Three different ways to approach this

line search problem are briefly stated in the definition below.

(4.1) Definition. 1. Choose αn := α ∈ R constant,

2. Choose αn :∈ argminα>0f (xn−α∇f (xn)), which is the optimal way to choose a step

size, this is referred to as exact line search,

3. Choose some αn that fulfils the Wolfe conditions:

f (xn − αnpn) ≤ f (xn)− c1αn∇f (xn)Tpn,(4.2)

∇f (xn − αnpn)Tpn ≥ c2∇f (xn)Tpn,(4.3)

where 0 < c1 < c2 < 1 are predetermined tuning parameters. •

Applying a constant step size is cheap, but often inefficient. Deriving a perfect step

length is expensive, but often very efficient. Wolfe conditions attempt to find an optimal

compromise between these two competing goals. Condition (4.2) ensures that the update

provides good descent results by comparing the value of the target function f in the

proposed next step xn−αnpn with a first order Taylor approximation of the target function in

this point. However, very small step sizes αn ≈ 0 always fulfil this equation. To account for
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this, Condition (4.3) is employed to ensure step sizes are not allowed to shrink undeterred.

If the Wolfe conditions hold in every update step and f fulfils some further smoothness

conditions, the steepest descent method (or more general: any gradient descent method)

does indeed converge to a local minimum (cf. [38, Theorem 3.2]).

The Wolfe conditions can be implemented in a backtracking manner. I.e. a maximal step

length α > 0 is proposed and decreased until the first Wolfe condition (4.2) is fulfilled. The

second Wolfe condition (4.3) is negligible, since the decreasing of the step length itself

ensures sufficiently large steps. A drawback of any backtracking method is a relatively

large amount of f evaluations that are necessary to determine the step length of a single

step.

4.2. Regularisation of the Ensemble Kalman Filter

Consider again the classical approach to inverse problems, which is given by the minimisa-

tion problem:

min
u∈X
‖G(u)− y‖2

Y .

Solving this minimisation problem numerically is problematic. A form of regularisation

is suggested in Subsection 1.1.1 (and denoted in Equation (1.5)) to overcome problems

given by the non-convexity of the target functional and complexity of G. Assume that G
is continuously differentiable. Then, another approach to solve this minimisation problem

is the Levenberg-Marquardt (LM) algorithm, a trust-region method for non-linear least

squares problems. Instead of first proposing a descent direction and then deriving a step

size as given in Section 4.1, trust-region algorithms first propose a radius rn and then

derive an (approximately) optimal update xn+1 = xn + hn within the sphere of this radius

rn around the current state, i.e. ‖hn‖X ≤ rn. This update is given as the optimal solution

of a linearisation of the (classical) inverse problem, which is regularised by the Lagrange

multipliers of the constraint ‖hn‖X ≤ rn, i.e.

(4.4) hn ∈ argminh∈X‖y − G(xn)−∇G(xn)h‖Y + αn‖h‖2
X,

where αn ∈ R is the Lagrange multiplier. Hanke [23, Chapter 2] proposes a way to set this

αn, which ensures stable parameter estimations xN. There, the Lagrange multiplier αn is

chosen such that

‖y − G(xn)−∇G(xn)hn,αn‖Y = c1‖y − G(xn)‖Y ,
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where hn,β ∈ argminh∈X‖y−G(xn)−∇G(xn)h‖Y +β‖h‖2
X is the solution of the optimisation

problem in (4.4) based on the Lagrange multiplier β and c1 ∈ (0, 1) is some predetermined

parameter.

Algorithm 1: Regularised Ensemble Kalman Filter [27, p. 4f]

N ∈ N is the amount of steps, J the ensemble size, α ∈ (0,∞)N the minimal

Lagrange multiplier in each step and (u
(j)
0 : j ∈ {1, ..., J}) ∼ µ⊗J0 the inital ensemble.

for n ∈ {0, ..., N − 1} do

while c1‖Γ−
1
2 (y − [G(u

(·)
n )]J)‖Y > αn‖Γ

1
2 (Cppn+1 + αnΓ)−1(y − [G(u

(·)
n )]J)‖Y do

αn := 2 · αn
end

for i ∈ {1, ..., J} do

u
(j)
n+1 := u

(j)
n + Cupn (Cppn + αnΓ)−1(y − G(u

(j)
n ))

end

end

return uEnKFreg,J,N
G(u)+η=y := 1

J

∑J
j=1 u

(j)
N .

This approach is then applied in a gradient free manner in [26] and [27] to stabilise the

estimate of the Ensemble Kalman Filter. Here, αn is the weight of the regularisation rather

than a Lagrange multiplier. Given is Algorithm 1, which uses a backtracking method to

derive a minimal αn fulfilling the gradient free Hanke condition

c1‖Γ−
1
2 (y − [G(u

(·)
n )]J)‖Y ≤ αn‖Γ

1
2 (Cppn+1 + αnΓ)−1(y − [G(u

(·)
n )]J)‖Y .

It can be interpreted as a backtracking line search method, since it determines a step length

α−1
n . However, the main objective of this algorithm is not a reduction of the amount of

G-evaluations, which is motivated in the introductory text of Chapter 4. Its focus is more

concerned with regularisation and stabilisation of the EnKF.

Results of numerical experiments comparing this algorithm with the non-regularised En-

semble Kalman Filter are presented in [27, p. 8].

4.3. A Bayes Linear Backtracking Line Search Approach

A backtracking line search method is presented in Section 4.1 in order to determine a step

length that is sufficiently large and fulfils the first Wolfe condition (4.2). The first Wolfe

condition can be interpreted as a comparison between the target after the next update

step and a first order Taylor approximation of the target in the next step. This Taylor

approximation is constructed about the current state of the optimisation method.
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Motivated by Wolfe, a line search for the EnKF is constructed here that also compares

the evaluation of the target functional in the next update step with its linearisation. Since

the EnKF is gradient free and its updates are based on Bayes Linear approximations of

conditional expectations, a Bayes Linear approximation should form the right hand side of

the condition, rather than a first order Taylor approximation. Particular, the Bayes Linear

approximation of the conditional expectation of ‖G(u)− y‖2
Γ−1 given G(u) + η = y .

Before this Bayes Linear approximation is discussed, the actual conditional expectation

E[‖G(u)− y‖2
Γ−1|G(u) + η = y ] is examined further, which generally states how small the

misfit functional is on average, given the inverse problem and potentially provides insight

into the influence of noise. Given a linear forward response operator G : X → Y , this

conditional expectation can be derived analytically:

(4.5) Theorem. Let Assumptions (2.34) hold, X := Rk , G : X → Y be a linear operator

and u ∼ µ0 = N(m0, C0). Then,

E
[
‖Gu − y‖2

Γ−1|Gu + η = y
]

=

M∑
m=1

[(Γ−
1
2G(C0 − C0GT (GC0GT + Γ)−1GC0)GTΓ−

1
2
T )m,m

+ (Γ−
1
2 (G(m0 + C0GT (GC0GT + Γ)−1(y − Gm0))− y))2

m,m]. •

Proof. By the independence of u and η and since G is linear, [Gu+η]#P = N(Gm0,GC0GT+

Γ). Theorem (2.31) states, that P(u ∈ ·|Gu + η = y) = N(m1, C1), where

m1 = m0 + C0GT (GC0GT + Γ)−1(y − Gm0),

C1 = C0 − C0GT (GC0GT + Γ)−1GC0.

Therefore,

E
[
‖Gu − y‖2

Γ−1|Gu + η = y
]

=

∫
‖Γ−

1
2 (Gu − y)‖2

Y dN(m1, C1)(u)

=

∫
‖v‖2

Y dN(Γ−
1
2 (Gm1 − y),Γ−

1
2GC1GTΓ−

1
2
T )(v)

=

M∑
m=1

∫
v 2
mdN(Γ−

1
2 (Gm1 − y),Γ−

1
2GC1GTΓ−

1
2
T )(v)

=

M∑
m=1

[
(Γ−

1
2GC1GTΓ−

1
2
T )m,m + (Γ−

1
2 (Gm1 − y))2

m

]
.

The content of this theorem is illustrated in a one dimensional example below.

(4.6) Example. Let Gv := 5v (v ∈ R), Γ = 1 and µ0 = N(0, 2). Then, Gu+η ∼ N(0, 51),
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E[u|Gu + η = y ] = 10
51
y , Var(u|Gu + η = y) = 2

51
and E

[
‖Gu − y‖2

Γ−1 |Gu + η = y
]

=
50
51

+ y2

2601
. •

Since the norm is weighted by Γ−1, one would normally assume that this conditional

expectation is approximately 1 - at least given that the noise is not specifically high.

Given the example above, one intuitively expects that G(u) + η ∈ (−
√

51,
√

51) with high

probability and in fact P(G(u) +η ∈ (−
√

51,
√

51)) ≈ 0.6827. If y is outside that interval,

the conditional expectation is > 1, which implies that the noise might have been higher

than expected. When y is close to zero, this could imply a small noise or (seemingly more

likely) that the noise η and u have different signs. Therefore, the conditional expectation

is still approximately given by 1 in that case.

Wolfe and the connection between Bayes Linear and the Ensemble Kalman Filter appears

to suggest the Bayes Linear approximation of the conditional expectation given above to

be superior to the conditional expectation itself, which is in general hard to determine

anyway. This Bayes linearisation is

[
‖G(u)− y‖2

Γ−1

]BLE

G(u)+η=y

= E
[
‖G(u)− y‖2

Γ−1

]
+ Cov

(
‖G(u)− y‖2

Γ−1,G(u)
)

(Cov(G(u)) + Γ)−1(y − E[G(u)]),

and the empirical version that would be used in the n-th (n ∈ N∪{0}) step of the Ensemble

Kalman Filter is then

(4.7)[
‖G(un)− y‖2

Γ−1

]B̂LE,J

G(un)+η=y
=
[
‖G(u

(·)
n )− y‖2

Γ−1

]
J

+ Czpn (Cppn + h−1
n Γ)−1(y − [G(u

(·)
n )]J),

where Czpn := ĈovJ(‖G(u
(·)
n )− y‖2

Γ−1,G(u
(·)
n )). This Bayes Linear estimation is then com-

pared to the expected value of the target functional in the next step, i.e.

(4.8)
[
‖G(u

(·)
n+1)− y‖2

Γ−1

]
J

=
[
‖G(u

(·)
n + Cupn (Cppn + h−1

n Γ)−1(y
(·)
n+1 − G(u

(·)
n )))− y‖2

Γ−1

]
J
,

which should be smaller than the estimator in (4.7). A backtracking method would now,

equivalently to Algorithm 1, decrease hn by a factor until[
‖G(u

(·)
n + Cupn (Cppn + h−1

n Γ)−1(y
(·)
n+1 − G(u

(·)
n )))− y‖2

Γ−1

]
J

(4.9)

≤
[
‖G(u

(·)
n )− y‖2

Γ−1

]
J

+ c1C
zp
n (Cppn + h−1

n Γ)−1([y
(·)
n+1]

J
− [G(u

(·)
n )]J),

where c1 ∈ (0, 2) is a predetermined tuning parameter, which allows an adjustment of the

covariance of u and G(u)): c1 ∈ (0, 1) implies a weaker dependence, whereas c1 ∈ (1, 2)
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implies a stronger dependence.

A basic requirement for any backtracking condition is that the condition holds for step

sizes close to 0 or at least for 0 itself. Inequality (4.9) is typically fulfilled (cf. Sections

5.1, 5.2, and 5.3) for small hn, and certainly as hn ↓ 0:

(4.10) Lemma. Let Assumptions (2.34) hold and consider Definition (3.13). Then,[
‖G(u

(·)
n )− y‖2

Γ−1

]
J

+ Czpn (Cppn + h−1Γ)−1([y
(·)
n+1]

J
− [G(u

(·)
n )]J))

h↓0−→
[
‖G(u

(·)
n )− y‖2

Γ−1

]
J
,[

‖G(u
(·)
n + Cupn (Cppn + h−1Γ)−1(y

(·)
n+1 − G(u

(·)
n )))− y‖2

Γ−1

]
J

h↓0−→
[
‖G(u

(·)
n )− y‖2

Γ−1

]
J
. •

Proof. Let (λhm : m ∈ {1, ...,M}) be the eigenvalues of (Cppn + h−1Γ), (λCm : m ∈
{1, ...,M}) be the eigenvalues of Cppn and (λΓ

m : m ∈ {1, ...,M}) be the eigenvalues of Γ

and let each of these vectors be in descending order. Since each of these three matrices is

symmetric, [45, Theorem 1 (Wielandt)] can be applied given A := Cppn +h−1Γ, B := −Cppn
and A+ B = h−1Γ (A,B are given in [45]’s notation). It states that

λhm ≥ λCM + h−1λΓ
m (m ∈ {1, ...,M}).

Since Γ is strictly positive definite, λΓ
m > 0 (m ∈ {1, ...,M}). Therefore, λhm → ∞

(m ∈ {1, ...,M}), as h ↓ 0. Which implies that all eigenvalues of (Cppn + h−1Γ)−1, which

are ((λhm)−1 : m ∈ {1, ...,M}), converge to 0 as h ↓ 0. But then, ‖(Cppn + h−1Γ)−1‖2 →
0 (h ↓ 0) and thus (Cppn + h−1Γ)−1 → 0 (h ↓ 0). (cf. [25, p. 151, p. 346])

Eventually, the continuity of G implies that the statements are true.

The Ensemble Kalman Filter with Bayes Linear line search is given in Algorithm 2. Some

further topics concerning this algorithm are discussed in Remark (4.11)

(4.11) Remark. 1. Even though the backtracking condition is fulfilled in the limit as h ↓ 0,

solving a system of linear equations given by (Cppn + h−1Γ) and some vector or inverting

that matrix might be numerically infeasible, if h ≈ EPS. Hence, the algorithm should have

a predefined minimal step length, which is chosen if backtracking reaches that point.

2. All components of the estimator in (4.7) can be determined using the current ensemble

and do not require further evaluations of G. The estimator in (4.8) however requires J

further evaluations of G per step length h that is tested. While doing that, G is also

evaluated with respect to the correct update step, which is the update step based on the

step length that is finally chosen by the backtracking. Consequently, the algorithm reuses

these G-evaluations to derive the next update step rather than evaluating the updated

48



4. Line Search Strategies for the Ensemble Kalman Filter

ensemble again. If the maximal step size fulfils condition (4.9) in every step, the algorithm

evaluates G a total of JN + J times, rather than JN times in the normal EnKF. The

additional J times are the evaluations checking whether the last step is indeed short enough.

Since the algorithm terminates after that step, this ensemble evaluation cannot be reused.

3. Numerical experiments show that the RHS of condition (4.9) sometimes tends to be

negative in the first few steps. Naturally, the condition fails to hold in this case, even

Algorithm 2: Ensemble Kalman Filter with Bayes Linear line search

Let J be the ensemble size, hmax be the maximal and hmin the be minimal step length,

h∑ := 0, (u
(j)
0 : j ∈ {1, ..., J}) ∼ µ⊗J0 be the inital ensemble, n := 0, c1 ∈ (0, 2) and

c2 ∈ (0, 1)

G(j)
0 := G(u

(j)
0 ) (j ∈ {1, .., J})

while h∑ < 1− EPS do

h := min{1− h∑, hmax} /* (4.11) 4. */

Cppn := 1
J

∑J
j=1(G(j)

n − [G(·)
n ]J)⊗ (G(j)

n − [G(·)
n ]J)

Cupn := 1
J

∑J
j=1(u

(j)
n − [u

(·)
n ]J)⊗ (G(j)

n − [G(·)
n ]J)

Czpn := 1
J

∑J
j=1(‖G(j)

n − y‖2
Γ−1 − [‖G(·)

n − y‖2
Γ−1]

J
)⊗ (G(j)

n − [G(·)
n ]J)

y
(j)
n+1 := y + η

(j)
n (j ∈ {1, ..., J}, (η

(j)
n : j ∈ {1, ..., J}) ∼ N(0, h−1Γ)⊗J)

u
(j)
prop := u

(j)
n + Cupn (Cppn + h−1Γ)−1(y

(j)
n+1 − G

(j)
n ) (j ∈ {1, ..., J})

G(j)
prop := G(u

(j)
prop) (j ∈ {1, .., J})

RHS :=
[
‖G(·)

n − y‖2
Γ−1

]
J

+ c1C
zp
n (Cppn + h−1Γ)−1([y

(·)
n+1]

J
− [G(·)

n ]J)

while
[
‖G(·)

prop − y‖2
Γ−1

]
J
> RHS && h > hmin /* (4.11) 1. */

do

h := c2h

y
(j)
n+1 := y + η

(j)
n (j ∈ {1, ..., J}, (η

(j)
n : j ∈ {1, ..., J}) ∼ N(0, h−1Γ)⊗J)

u
(j)
prop := u

(j)
n + Cupn (Cppn + h−1Γ)−1(y

(j)
n+1 − G

(j)
n ) (j ∈ {1, ..., J})

G(j)
prop := G(u

(j)
prop) (j ∈ {1, .., J})

RHS :=
[
‖G(·)

n − y‖2
Γ−1

]
J

+ c1C
zp
n (Cppn + h−1Γ)−1([y

(·)
n+1]

J
− [G(·)

n ]J)

end

u
(j)
n+1 := u

(j)
prop (j ∈ {1, .., J})

G(j)
n+1 := G(j)

prop (j ∈ {1, .., J}) /* (4.11) 2. */

n := n + 1

h∑ := h∑ + h

end

return uEnKFLS,J
G(u)+η=y := 1

J

∑J
j=1 u

(j)
n .

if the update would have resulted in a descent in the target functional. A solution to

this: substituting the RHS by
[
‖G(u

(·)
n )− y‖2

Γ−1

]
J
, thus ensuring that descent still occurs

while allowing large steps. However, initial numerical experiments show this strategy to
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5. Numerical Results and Discussion

be inefficient, accepting that the condition cannot be fulfilled by large steps in this case is

more profitable.

4. Iglesias’ LM method refers to the Ensemble Kalman Filter that is studied in section

3.2.1 considering the data assimilation setting rather than the Sequential Monte Carlo

setting. This report however focuses on the SMC setting, which is why the algorithm

ensures that the step lengths add up to 1. •

5. Numerical Results and Discussion

The following methods are numerically investigated: The analytical Bayes Linear estima-

tor, as given in Definition (2.19); the simulated Bayes Linear estimator, as discussed in

Subsection 2.4.3; the Ensemble Kalman Filter with fixed step size (EnKF), which is moti-

vated using sequential Monte Carlo and defined in (3.13), and the Ensemble Kalman Filter

with Bayes Linear (backtracking) line search (EnKFLS), as stated in Algorithm 2.

These methods are applied to compare estimation results, the variances of the estimators,

the data misfit and the accuracy of the parameters. The following test settings are

especially noteworthy:

• EnKF and analytical BLE, considering linear (cf. Example (2.18)) and cubic inverse

problem (cf. Example (2.39)),

• EnKF with ensemble size J and number of steps N and the BLE, where J ·N Monte

Carlo samples are used to simulate the parameters, considering the Groundwater

flow inverse problem (cf. Example (1.2)),

• EnKF and the expected value of the true posterior, where the true posterior is

simulated using self-normalised importance sampling (cf. [1]) considering the cubic

inverse problem,

• EnKF and a preconditioned Monte Carlo Markov Chain (pCN MCMC; cf. [10, Algo-

rithm 5.10]) considering a Bayesian inverse problem, where the posterior distribution

is multi-modal and MCMC methods are generally problematic. This inverse problem

concerns the estimation of parameters of the Glucose-Insulin model of Sturis et al.

[47] (cf. also [31]).

• EnKF and EnKFLS, considering the linear, cubic and Groundwater flow inverse prob-
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5. Numerical Results and Discussion

lem.

The following sections deal with the respective inverse problem and present results of

numerical experiments.

5.1 the linear inverse problem,

5.2 the cubic inverse problem,

5.3 the Groundwater flow inverse problem,

5.4 Glucose modelling inverse problem.

5.1. Linear Inverse Problem
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(a) True value, BLE/Conditional expec-

tation estimate and EnKF estimate,

given J = 100, N = 50.
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Figure 4 – Linear inverse problem: Estimations.

Given is the linear inverse problem (cf. Example (2.18)) in the following setting: Let

X := Y := R50, G ∈ R50×50 be a 50-dimensional discretisation of the inverse Laplacian

(−∆)−1 on [0, 1], which was derived using the series expansion (truncated after 1000
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5. Numerical Results and Discussion

summands) of the Mercer kernel of the inverse Laplician given by Mercer’s theorem (cf.

[48, Theorem 11.3]). The prior is a centred Gaussian distribution with covariance matrix

C0 = ( 1
2

exp(− 1
500
|i − j |))1≤i ,j≤50. The given data y ∈ Y was simulated using this prior

distribution and noise η ∼ N(0, 0.02I), which corresponds to a noise level of around 1%.

The parameters c2, which controls the descent of the step size, is set to be 0.25, and c1,

which controls the dependence of u and Gu, is 0.3. Furthermore, hmin := 0.01hmax.

Method û =
‖utrue−û‖X
‖utrue‖X

(±SD)
‖y−G(û)‖

Γ−1

‖y‖
Γ−1

(±SD) Gev (±SD)

E[u|G(u) + η = y ] = uBLE
G(u)+η=y

2.257E-1 3.561E-2

EnKF, J = 25, N = 5 2.798E-1 (3.68E-2) 3.688E-2 (9.68E-5) 125

EnKF, J = 25, N = 11 2.857E-1 (4.04E-2) 3.688E-2 (1.02E-3) 275

EnKFLS, J = 25, hmax = 0.2, c1 = 0.3 2.810E-1 (3.89E-2) 3.690E-2 (1.01E-3) 274 (11.15)

EnKF, J = 50, N = 25 2.568E-1 (2.51E-2) 3.626E-2 (5.99E-4) 1250

EnKF, J = 50, N = 31 2.567E-1 (2.66E-2) 3.623E-2 (6.20E-4) 1550

EnKFLS, J = 50, hmax = 0.04, c1 = 0.3 2.567E-1 (2.73E-2) 3.623E-2 (6.10E-4) 1550 (0)

EnKF, J = 100, N = 50 2.436E-1 (2.02E-2) 3.599E-2 (4.33E-4) 5000

EnKF, J = 100, N = 56 2.422E-1 (1.90E-2) 3.561E-2 (4.08E-4) 5600

EnKFLS, J = 100, hmax = 0.02, c1 = 0.3 2.429E-1 (1.93E-2) 3.595E-2 (4.04E-4) 5600 (0)

Table 1 – Linear inverse problem: Numerical results

Chosen are three different settings (J,N) ∈ {(25, 5), (50, 25), (100, 50)} for numerical

experiments given this inverse problem. One further simulation with the EnKF is performed

each with an amount of steps N̂ such that N̂ · J ≈ Gev , where Gev is the number of G-

evaluations that were necessary to perform the EnKFLS in the settings above each with

hmax := 1/N. The results of the Ensemble Kalman Filters (EnKF, EnKFLS) that are

presented in Table 1, are based on 500 test runs each.
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Figure 5 – Linear inverse problem: Misfit and step sizes of the EnKF as given in Figure 4 (b).

The Bayes Linear estimator and the conditional expectation are a.s. identical in this case,

i.e. the Bayes Linear estimator is the optimal L2-function approximating u given the

inverse problem. Therefore all the (non-linear) Ensemble Kalman Filter estimates, which

were realised with a relatively small amount of particles, are worse than this Bayes Linear

estimate. The line search does not appear to be significantly useful in this case either.
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5. Numerical Results and Discussion

Further tuning of the parameters c1, c2 might improve its results or at least decrease the

number of G-evaluations that are necessary to determine the step length by backtracking.

However, since the Bayes Linear estimate is optimal anyway, putting a lot of effort into

further tuning might be rather unreasonable. The misfit functional and the line search

behave as proposed in the introduction of Chapter 4: The first steps have a much bigger

impact on the misfit than all the others and the line search algorithm takes this into

account by choosing a specifically short step size for these initial steps. The impact of

the first steps on the misfit in the line search case appears to be slightly smaller than in

the standard case, i.e. the trajectory is steeper in Figure 5(a) than it is in Figure 5(c).

This is expected, since the chosen step sizes and thus the impact of the EnKF updates

are smaller here.

5.2. Cubic Inverse Problem

Method û =
‖utrue−û‖X
‖utrue‖X

(±SD)
‖y−G(û)‖

Γ−1

‖y‖
Γ−1

(±SD) Gev (±SD)

uBLE
G(u)+η=y

8.315E-1 9.842E-1

uMC
G(u)+η=y

5.465E-1 7.229E-1

EnKF, J = 25, N = 5 6.834E-1 (7.57E-2) 8.732E-1 (5.25E-2) 125

EnKF, J = 25, N = 12 6.927E-1 (7.68E-2) 8.360E-1 (5.64E-2) 300

EnKFLS, J = 25, hmax = 0.2, c1 = 0.6 6.819E-1 (8E-2) 8.565E-1 (5.67E-2) 294.3 (88.25)

EnKF, J = 50, N = 25 6.450E-1 (6.15E-2) 7.657E-1 (3.81E-2) 1250

EnKF, J = 50, N = 32 6.464E-1 (5.91E-2) 7.614E-1 (3.94E-2) 1600

EnKFLS, J = 50, hmax = 0.04, c1 = 0.6 6.445E-1 (6.03E-2) 7.594E-1 (3.81E-2) 1597.7 (245.85)

EnKF, J = 100, N = 50 6.218E-1 (4.59E-2) 7.261E-1 (2.12E-2) 5000

EnKF, J = 100, N = 57 6.222E-1 (4.36E-2) 7.283E-1 (2.30E-2) 5700

EnKFLS, J = 100, hmax = 0.02, c1 = 0.6 6.251E-1 (4.56E-2) 7.245E-1 (2.18E-2) 5630 (455.80)

Table 2 – Cubic inverse problem: Numerical results

Numerical experiments are done given the 50-dimensional version of the cubic inverse

problem (cf. Example (2.39)), i.e. again X := Y := R50. The covariance operator of the

centred Gaussian distribution that is used to simulate the data y ∈ Y and also used as

the prior distribution is proportional to the inverse Laplacian (−∆)−1 on [0, 1], particularly

C0 := 0.1(−∆)−1. It is again discretised using Mercer’s theorem. The noise η is also

centred Gaussian with covariance Γ = 0.00001I, which corresponds to a noise level of

around 1%. The analytical Bayes Linear estimator is derived (cf. Example (2.39)) and

the conditional expectation of u given G(u) + η = y is simulated using autonormalised

importance sampling (cf. [1, p. 7]) with 5E6 samples. The settings of the Ensemble

Kalman Filter with and without Bayes Linear (backtracking) line search are chosen as in

the linear case, apart from the parameter c1, which is set to be 0.6 here. The EnKF and

EnKFLS results are again based on 500 testruns.
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5. Numerical Results and Discussion

The analytical BLE is a relatively simple way to estimate the true parameter u and although

its results are the worst presented, the rough shape of the estimate appears to be correct.

The Ensemble Kalman Filter estimates however are better and even relatively close to the

Monte Carlo simulated conditional expectation of u given G(u) +η = y , which is a Monte

Carlo approximation of the optimal estimator. Furthermore, the Ensemble Kalman Filter

estimates are cheaper (J · N = 5E3 G-evaluations) than the Monte Carlo approximation

(5E6 G-evaluations), which proved unreliable when tested with samples. Therefore, the

EnKF appears to be a legitimate alternative to a Monte Carlo approximation whenever

one is only interested in an approximation of the conditional expectation.

The misfit functionals differed from expectations. Especially the impact of the first steps

on the misfit is not as big as in the linear or the groundwater flow case. Despite this, the

backtracking line search surprisingly chooses the step sizes more or less equivalently to the

linear case.
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Figure 6 – Cubic inverse problem: Estimations.

Even if the rough shape of the true parameter utrue is well approximated by any of these

methods, none of the relative errors of the estimation result are overwhelmingly good.

To prevent against explosion of the iterative methods one would have expected given the
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5. Numerical Results and Discussion

cubic inverse problem, which would have deteriorated the estimation results, an appropriate

prior and noise distribution should be chosen. In particular, they should ensure that all the

particles are always in (−1, 1)50 with high probability. This (possibly overly informative)

prior however might be the reason that this estimation problem appears to be much harder

than the linear inverse problem, even if the cubic and the linear G are both bijections and

hence relatively well-posed.
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Figure 7 – Cubic inverse problem: Misfit and step sizes of the EnKF as given in Figure 6(b).

5.3. Groundwater Flow Inverse Problem

Method û =
‖utrue−û‖X
‖utrue‖X

(±SD)
‖y−G(û)‖

Γ−1

‖y‖
Γ−1

(±SD) Gev (±SD)

BLE, J = 125 1.014 (3.20E-2) 1.445E-1 (2.15E-2) 125

EnKF, J = 25, N = 5 9.342E-1 (9.35E-2) 3.941E-2 (6.73E-3) 125

EnKF, J = 25, N = 8 9.282E-1 (8.92E-2) 3.591E-2 (7.362E-3) 200

EnKFLS, J = 25, hmax = 0.2, c1 = 0.8 9.308E-1 (9.00E-2) 4.282E-2 (1.56E-2) 193.5 (123.2)

BLE, J = 1250 1.004 (1.27E-2) 1.347E-1 (3.53E-3) 1250

EnKF, J = 50, N = 25 8.431E-1 (5.67E-2) 3.871E-2 (3.28E-3) 1250

EnKF, J = 50, N = 27 8.487E-1 (5.75E-2) 3.756E-2 (3.48E-3) 1350

EnKFLS, J = 50, hmax = 0.04, c1 = 0.98 8.381E-1 (5.07E-2) 3.89E-2 (3.62E-3) 1313 (62.2)

BLE, J = 5000 9.995E-1 (6.16E-3) 1.344E-1 (2.40E-3) 5000

EnKF, J = 100, N = 50 7.996E-1 (3.75E-2) 4.415E-2 (2.27E-3) 5000

EnKF, J = 100, N = 52 8.049E-1 (4.09E-2) 4.357E-2 (2.38E-3) 5200

EnKFLS, J = 100, hmax = 0.02, c1 = 1.05 7.973E-1 (4.03E-2) 4.412E-2 (2.18E-3) 5161 (184.2)

BLE, J = 5E4 9.999E-1 (4.88E-1) 1.339E-1 (6.53E-2) 5E4

Table 3 – Groundwater flow inverse problem: Numerical results

Consider the groundwater flow inverse problem, that is exemplified in (1.2) in the set-

ting of the identical problem in [43, Section 5.2]. Particularly, D := (−1, 1)2, X :=

L2(D,BD,Leb(2)) (rather than L∞(D,BD,Leb(2)), as proposed in Example (1.2), cf.

[10, Theorem 2.18, Example 2.19]), Y := R49, f (d) := 100 (d ∈ D), µ0 := N(0, (−∆|D)−2),

Γ := I. The 49 observations are (deterministically) uniformly picked in D, i.e. G : X → Y,

v 7→ (pv(d) : d ∈ 1
4
Z2 ∩D),
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5. Numerical Results and Discussion

where pv is the solution of PDE (1.3) given log-permeability v , which is numerically eval-

uated by a linear finite elements method with spatial mesh width 2−4. True parameter

and data y is simulated using this model G, prior µ0 and noise distribution R = N(0,Γ).

Ensemble size J, the number of steps N, and the step size boundaries hmax, hmin are chosen

exactly as they are given in the other examples above. The parameters c2, which is 0.5

here, and c1, the choice of which is discussed below. The simulated Bayes Linear Esti-

(a) True Parameter (b) EnKF (c) EnKFLS (d) BLE

Figure 8 – Groundwater flow inverse problem: Estimation results of EnKF (J = 100, N = 50),

EnKF with Bayes Linear line search (J = 100, hmax = 0.02) and BLE (J = 5000)

mator is based on JBLE := J · N samples/evaluations of G in each of the given settings.

Furthermore, [43] provides evidence that the EnKF gives reasonable estimates, even if

the ensemble size is rather small. However, simulating the parameters of the BLE with a

small sample size does not appear adequate. Therefore, a further BLE is simulated using

JBLE := 5E4 particles. Due to the high computational complexity, the numerical results

are based on only 100 test runs per setting. The tuning of the parameter c1 resulted

in three different parameters for the three given settings, which increases as J increases.

The line search can be interpreted here as a correction mechanism that ensures that small

steps are chosen whenever sample means and covariances are badly approximated, which

is especially critical within the first steps. Moreover, the approximations are generally

better, given some greater ensemble size J. The resulting increased credibility of the sim-

ulated means and covariances allow for steeper descent to be encouraged, justifying how

parameter c1 is tuned here.

Given the results in Table 3, the line search appears to be generally more helpful given

this inverse problem than in the linear and cubic case. However, the variation of the

estimators is relatively high and considering Figure 8, fundamental differences depicted in

the comparison of the Ensemble Kalman Filter and the regularised Ensemble Kalman Filter

(cf. [27, Figure 1]) do not appear.

In Figure 9, the misfit functionals of both the EnKF with and without line search are similar

to those of the linear inverse problem. Again, the impact of the first steps is greater than

that of the later steps. The line search takes this into account and chooses the step sizes

according to this fact.
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Figure 9 – Groundwater flow inverse problem: Misfit functional and step sizes of EnKF and

EnKFLS as given in Figure 8

Simulating the (one step) BLE in this setting is not useful at all. Comparing some EnKF

estimation using J particles and N ≥ 2 steps with some Bayes Linear estimation using

JBLE particles. The BLE solution of that inverse problem was always worse than the EnKF

solution, even if JBLE � J · N. Actually, even the poorest non-linear estimation (EnKF;

J = 25, N = 5) is better than the best linear estimation (BLE; J = 5E4). This implies that

the linearity assumption the BLE is based on is generally indeed too strong, a fact which

is used as a motivation of the Ensemble Kalman Filter in the introduction of Chapter 3.

5.4. Glucose Modelling Inverse Problem

A parameter estimation problem concerning the insulin and glucose model that is derived

in [47] and also given in [31, Section 16.3] is studied. The biological background of glucose

and insulin, their ultradian oscillations and the construction of G are also discussed in [47]

and [31]. The notations below are borrowed from [31], even though the model is treated

purely mathematically. It is given by the following system of ordinary differential equations

dIp
dt

= f1(G)− E
(
Ip
Vp
−
Ii
Vi

)
−
Ip
tp
,(5.1)

dIi
dt

= E

(
Ip
Vp
−
Ii
Vi

)
−
Ii
ti
,

dG

dt
= f4(h3) + IG(t)− f2(G)− f3(Ii)G,

dh1

dt
=
Ip − h1

td
,

dh2

dt
=
h1 − h2

td
,

dh3

dt
=
h2 − h3

td
,
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where the functions f1, f2, f3 and f4 are given by

f1(G) =
Rm

1 + exp
(
−G
VgC1

+ a1

) ,
f2(G) = Ub

(
1− exp

(
−G
VgC2

))
,

f3(Ii) =
1

VgC3

(
U0 +

Um − U0

1 + ( 1
C4

( 1
Vi
− 1

Eti
)Ii)−β

)
,

f4(h3) =
Rg

1 + exp
(
α
(

h3

VpC5
− 1
)) ,

a1 = 6.67, C1 = 300, C2 = 144, C3 = 100, C4 = 80, C5 = 26, Rg = 180, Rm = 209, tp =

6, td = 12, Ub = 72, U0 = 4, Um = 94, Vi = 11, Vg = 10, α = 7.5, β = 1.77 and IG :

[0,∞)→ R is a continuous function. The vector v := (E, Vp, ti) ∈ (0,∞)3 is a parameter

and Fv : [0,∞)→ R6 is the solution of this ode parametrised by v .

Method û =
‖utrue−û‖X
‖utrue‖X

(±SD)
‖y−G(û)‖

Γ−1

‖y‖
Γ−1

(±SD) Gev

EnKF, J = 12, N = 5 7.583E-1 (4.96E-1) 6.975E-2 (1.73E-3) 60

EnKF, J = 24, N = 10 5.710E-1 (3.25E-1) 6.936E-2 (3.74E-4) 240

EnKF, J = 36, N = 15 5.939E-1 (2.57E-1) 7.001E-2 (2.13E-3) 540

EnKF, J = 48, N = 20 4.641E-1 (3.12E-1) 7.015E-2 (1.15E-3) 960

preconditioned MCMC 8.749E-1 (8.30E-1) 4.45E-2 (7.5E-3)

Table 4 – Glucose modelling inverse problem: Numerical results

The glucose modelling inverse problem is given by X := R3, Y := RM, the forward response

operator G : X → Y,

û 7→
(
π3 ◦ F(exp(û1),exp(û2),exp(û3))(tm) : m ∈ 1, ...,M

)
,

where π3 : R6 → R is the projection on the third coordinate and (t1, ..., tM) ∈ [0,∞)M are

strictly ascending time steps. The given data y ∈ Y is an evaluation of G(u) + η, where

u ∼ µ0 := N(log(0.2), log(0.2)2)⊗ N(log(3), log(3)2)⊗ N(log(100), log(100)2),

η ∼ R := N(0, 25I).

It would have been possible to denote the prior as a log-normal distribution of the genuine

parameters E, Vp and ti . The notation using a Gaussian prior here is chosen for the sake

of consistency. Moreover, the noise distribution R corresponds to a noise level of around

5%.

The glucose modelling inverse problem is numerically solved using the fixed step size En-
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5. Numerical Results and Discussion

semble Kalman Filter and a preconditioned Monte Carlo Markov Chain (the MCMC results

were provided by David Albers and Matthew Levine, Columbia University, New York). The

numerical evaluation of the given model G is notably more expensive than any of the

other examined models. This is mostly due to its stiffness, which was detected while

doing numerical experiments with explicit solvers which did not use sufficiently small step

sizes. To protect against further issues arising from the stiffness of the model, the model

is evaluated using an implicit solver (Matlab ode15s). This is, in general a conserva-

tive and inefficient choice. (cf. [41, Section 11.10]) Due to this, and the low dimen-

sional parameter space X, relatively small ensemble sizes are considered, more precisely

(J,N) ∈ {(12, 5), (24, 10), (36, 15), (48, 20)}. The numerical results that are presented in

Table 4 are based on 20 runs of the EnKF and 7 runs of the preconditioned Monte Carlo

Markov Chain (MCMC). The MCMC method is based on 1.5E4 steps, respectively 1.3E4

steps and a burn-in period of 2E3 steps.
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Figure 10 – Glucose Modelling Inverse Problem: Data and evaluations of EnKF

G(uEnKF,J=36,N=15) and MCMC G(uMCMC)estimates

Figure 10 presents the data and G evaluations of the best MCMC estimate and the best
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6. Conclusions

EnKF estimate (best refers to the relative error of the estimated parameter u) of the

simulations whose results are given in Table 4. Considering the noise, both evaluations

restore the shape of the data well. However, the standard deviation of the relative error of

the parameter estimated by both methods, is substantially higher than the standard devi-

ation of the corresponding loss functionals. This implies, that the corresponding classical

inverse problem might have several local minima, respectively the posterior distribution is

multi-modal. Figure 11(a) shows the seven Monte Carlo Markov Chains, none of which

seem to converge to their stationary distribution. The paths appear to be stuck in at least

two different areas/modes - the yellow and dark(er) blue path are close to the true param-

eter. Comparing this with Figure 11(b) which presents (the updates of) the ensembles of

seven independent EnKF simulations. The particles of each EnKF simulation cover the

presented area of the posterior distribution’s support much better than any of the paths

of the MCMC. The combination of all the EnKF particles presented in this Figure would

cover the area perfectly, which indicates that a higher amount of particles would improve

the situation even more.
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(a) Paths of the seven MCMC simula-

tions presented in Table 4
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(b) Particles of seven EnKF estimation

given J = 48, N = 20

Figure 11 – Glucose Modelling Inverse Problem: EnKF and MCMC particles - each of them

projected onto the first coordinate

Therefore the Ensemble Kalman Filter with sufficiently high J and N (cf. Table 4) is able

to handle this multi-modal case better, than the MCMC method does.

6. Conclusions

Bayes Linear statistics is a huge class of methods that can be applied successfully in

the framework of Bayesian inverse problems. The mathematical foundations for such

applications are presented in this report (cf. Chapter 2).

The BLE is optimal, if G is linear, and thus, better than the EnKF in this case. However,
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6. Conclusions

the EnKF provided better estimates than the BLE in the non-linear problems that are

numerically examined in this report. The latter results are independent of the derivation of

the BLE, which is equally inadequate in both analytically and simulation based variations.

Allowing the same or a greater number of G-evaluations as in a comparable EnKF esti-

mation does not improve the estimation results of the BLE significantly. (cf. Subsections

5.2 and 5.3).

Numerical experiments have also shown that the EnKF is a legitimate alternative to a

Monte Carlo or Monte Carlo Markov Chain simulation. The EnKF solution of the cu-

bic inverse problem even appeared to converge to the mean estimate provided by (fully

Bayesian) self-normalised importance sampling as J,N →∞. As mentioned above, it can-

not be used to approximate the posterior distribution, but it is a computationally cheap

alternative to estimate the posterior mean which can be applicable even in cases where

a comparable MCMC method is problematic due to a multi modal posterior distribution.

(cf. Subsections 5.2 and 5.4)

Once it is calibrated correctly the Bayes Linear (backtracking) line search can improve the

estimation results of the Ensemble Kalman Filter. The correct calibration is crucial here

and notably expensive. Furthermore, backtracking itself is a relatively expensive method

to determine step lengths, since it requires a great number of G-evaluations. The results

of the numerical experiments given here neither confirm, nor discourage against using it

in practice. (cf. Subsections 5.1, 5.2 and 5.3)

6.1. Future Research

This report examines only one Bayes Linear method in the inverse problems framework:

the conditional mean estimate. Applying further Bayes Linear methods, such as Bayes

Linear sufficiency, the Bayes Linear covariance estimator or some of the other methods

presented in [21], could also improve upon the Ensemble Kalman Filter or other methods.

Deriving the simulation based Bayes Linear estimator using K samples is equivalent to

some noise-free Ensemble Kalman Filter given J = K ensemble members and N = 1 step.

This is typically worse than most other EnKF estimations given combinations of J, N with

J · N = K. Similarly, one expects that an EnKF simulation with only one particle and K

steps would lead to a poor approximation. These facts raise the question whether there

is an optimal strategy to choose the proportion of N and J, given a maximal amount of

G-evaluations K = N · J.
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6. Conclusions

Even though the EnKF returns good posterior mean estimates, the posterior distribution

approximately given by the empirical distribution of the particles is useless. However,

having a posterior distribution is crucial in Bayesian inverse problems, which implies to

consider strategies to improve this poor approximation in future. (cf. various approaches

in [37])

The Bayes Linear backtracking condition is only used here to adjust the step length. Can

it also be used to adjust the amount of particles J or the spatial mesh width of the G-

evaluations (in a Multi-level manner)? Are there alternative conditions that one could

use for those other adjustments or for instance to increase the step length rather than

decreasing it?

The step lengths suggested by the Bayes Linear line search method are roughly equivalent

throughout all numerical experiments. Instead of calibrating a relatively expensive back-

tracking method, one could try to construct an EnKF with multiple step lengths that are

chosen in a predetermined way, ascendingly and independently of the particles behaviour

at runtime.
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A. Appendix: Optimisation

A. Appendix: Optimisation

Some fundamental definitions and results from the theory of non-linear optimisation are

summarised in this section. The stated results are based on [38], [40] and [48]. This

appendix does not contain any proofs.

(A.1) Definition. Let f : X → R be a function.

• x∗ is a global minimum of f , if for all x ∈ X\{x∗}: f (x) ≥ f (x∗) and strict global

minimum if the inequality holds strictly,

• The set of minimisers is denoted by argminx∈Xf (x) := {x∗ ∈ X : f (x∗) ≤ f (x) (x ∈
X)} and minx∈X f (x) := f (x∗), if x∗ ∈ argminx∈Xf (x),

• x∗ ∈ X is a (strict) local minimum if a neighbourhood B ⊆ X of x∗ exists, such that

x∗ is a (strict) global minimum of f |B,

• x∗ ∈ X is a (strict) global maximum of f , if x∗ is a (strict) global minimum of −f .

The other definitions apply for maximum analogously. •

The objective of optimisation is to find a minimum of a function. Finding a minimum

numerically is well-posed, if that function has a local minimum and is convex.

(A.2) Definition. A subset V of some R- or C-vector space is convex, if for all t ∈ (0, 1)

and u, v ∈ V their linear combination tu + (1− t)v ∈ V .

A function f : V → R is convex, if V is convex and for all t ∈ (0, 1) and u, v ∈ V the

inequality

tf (u) + (1− t)f (v) ≥ f (tu + (1− t)v)

holds. Furthermore, f is strictly convex, if f is convex and the inequality holds strictly. •

(A.3) Theorem. Let f : V → R be a convex function. Then, statements 1-3 hold.

1. Let x∗ be a local minimum. Then, x∗ is also a global minimum.

2. Let f be strictly convex and x∗ be a local minimum. Then, x∗ is the unique global

minimum. •

Proof. [48, Theorem 4.19]
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A.1. (Linear) Least Squares Problems

Let X ,Y be Hilbert spaces, b ∈ Y and A : X → Y be a linear Operator. Furthermore,

assume that im(A) is a closed subspace of Y. A linear least squares problem is given by

(A.4) min
x∈X
‖Ax − b‖2

Y .

Let V ⊆ X be a closed subspace of X and b ∈ X . Consider the following minimisation

problem:

(A.5) min
x∈V
‖x − b‖2

X .

(A.6) Lemma. x̂ ∈ V is the unique minimiser of minimisation problem (A.5) if and only if

(x̂−b) ⊥ V. Thus, the map X 3 b 7→ x̂ ∈ V ({x̂} = argminv∈V ‖v−b‖2) is the orthogonal

projection from X to V . •

Proof. [48, Lemma 4.25, Lemma 4.26]

(A.7) Theorem. x̂ ∈ X is a minimiser of minimisation problem (A.4) if and only if A∗Ax̂ =

A∗b. •

Proof. [48, Lemma 4.27]

B. Appendix: Probability and Measure Theory

This section contains chosen standard theorems and notations from measure and proba-

bility theory the report refers to. An elementary introduction to measure and probability

theory is given in several books, such as [2] or [3]. This appendix is based on [2], [3], [5],

[6], [12], and [32] and does not contain any proofs.

B.1. Foundations

(B.1) Definition. 1. For a given family of sets E , the generated σ-algebra is defined

by σ(E) :=
⋂
{F : F σ-algebra : F ⊇ E}.

2. Let (T, T ) be a topological space. The Borel-σ-algebra on (T, T ) is defined by

B(T, T ) := σ(T ). If there is some standard topology T associated with T or
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B. Appendix: Probability and Measure Theory

T induced by a given metric or norm, BT := B(T ) := B(T, T ). Furthermore,

Bk := B(Rk) and B := B1.

3. Let (Θ,F), (Θ′,F ′) be measurable spaces. A function f : Θ → Θ′ is called F-F ′-
measurable, if f −1[F ′] ∈ F for any F ′ ∈ F ′ and denoted by f : (Θ,F)→ (Θ′,F ′). If

(Θ′,F ′) = (R,B), the function f is called measurable numerical or just measurable.

DenoteM := {f : Θ→ R : f : (Θ,F)→ (R,B)} the set of all measurable numerical

functions given some measurable space and M+ := {f : Θ → R : f : (Θ,F) →
([0,∞),B[0,∞))}.

4. Let Θ be a set, (Θ′,F ′) be a measurable space and f : Θ→ Θ′ be a function. The

initial σ-algebra of f is defined by

σ(f ) := {f −1[F ′] : F ′ ∈ F ′}.

By definition, f : (Θ, σ(f ))→ (Θ′,F ′). •

(B.2) Definition. 1. Let (Θ,F , µ) be a measure space, (Θ′,F ′) be a measurable space

and f : (Θ,F , µ) → (Θ′,F ′) be a measurable function. The pushforward measure

on (Θ′,F ′) is given by f #µ : F ′ → [0,∞], F ′ 7→ µ(f ∈ F ′). It is welldefined as

a measure. Furthermore, if µ is a probability measure, f #µ is also a probability

measure. In the latter case, f is called (Θ′-valued) random variable and f #µ is the

probability distribution of f .

2. Let (Θ,F , µ) be a measure space. It is called finite, if µ(Θ) <∞, and σ-finite, if a

countable partition P ⊆ F of Θ exists, such that µ(P ) <∞ (P ∈ P). •

B.2. Integration

(B.3) Definition (Bochner-integral of simple functions). Let (Θ,F , µ) be a finite measure

space and X be a Banach space. A function g : (Θ,F) → (X,BX) is simple, if a

finite Partition P ⊆ F of Θ and a vector (xP : P ∈ P) ∈ XP exist, such that g(θ) =∑
P∈P xP1P (θ) (θ ∈ Θ). The (Bochner-)integral of g is defined by∫

gdµ :=
∑
P∈P

xPµ(P ),

if
∑

P∈P ‖xP‖Xµ(P ) <∞.

A function f : Θ → X is µ-measurable (and this is denoted by f : (Θ,F) → X), if a
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sequence of simple functions (fn : n ∈ N) exists, such that limn→∞ ‖fn−f ‖X = 0 (µ-almost

everywhere). •

(B.4) Lemma. Let (Θ,F , µ) be a finite measure space, f : (Θ,F) → ([0,∞),B[0,∞))

be a measurable numerical function. Then, one can find an isotonic sequence of simple

functions fn : (Θ,F) → ([0,∞),B[0,∞)) (n ∈ N), such that fn ↑ f as n → ∞. In

particular, positive measurable numerical functions are µ-measurable. •

Proof. [3, p. 195, Theorem 13.5].

The definition of the Bochner-integral requires a condition containing the µ-integral of

some positive measurable numerical function.

(B.5) Definition (µ-integral). Let (Θ,F , µ) be a measure space, f ∈ M+ and (fn : n ∈
N) ∈MN

+ be an isotonic sequence of simple functions, such that fn ↑ f (µ-a.e.) as n →∞
(well-defined, cf. Lemma (B.4)). The µ-integral of f is defined by

lim
n→∞

∫
fndµ =: I(f , µ). •

(B.6) Definition (Bochner-integral). Let (Θ,F , µ) be a finite measure space and X a

Banach space, f : (Θ,F) → X be a µ-measurable function and (fn)n∈N be the sequence

of simple functions, with limn→∞ fn = f µ-a.e.. f is (Bochner-)integrable, if

lim
n→∞

I(‖f − fn‖X, µ) = 0.

Given that case, the (Bochner-)integral of f is

lim
n→∞

∫
fndµ =

∫
f dµ.

If (Θ,F , µ) = (Rk ,Bk ,Leb(k)), the integral of f is called Lebesgue-integral and denoted

by ∫
f (θ)dθ :=

∫
f dµ. •

(B.7) Definition. Let (Θ,F , µ) be a measure space and f ∈M+.

1. The measure ζ : F → [0,∞], A 7→
∫

1Af dµ has µ-density f (or density f , if µ =

Leb(k), k ∈ N) and is denoted by f µ := ζ.
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2. Let ζ be a further measure on (Θ,F). ζ is called absolutely µ-continuous (or

absolutely continuous, if µ = Leb(k), k ∈ N), if µ(F ) = 0 implies ζ(F ) = 0, for any

F ∈ F . This is denoted by ζ � µ. •

(B.8) Theorem (Radon-Nikodym). Let (Θ,F) be a measurable space and µ, ζ measures

on it. Furthermore, (Θ,F , µ) and (Θ,F , ζ) are σ-finite. 1-2 are equivalent.

1. ζ � µ,

2. a µ-a.e. unique function f ∈M+ exists, such that ζ = f µ. Define dζ
dµ

:= f . •

Proof. [3, p. 449, Theorem 32.2].

(B.9) Theorem. Let (Θ,F , µ) be a finite measure space, (Θ′,F ′) be another measurable

space and X be a Banach space, f : (Θ′,F ′) → X be an integrable function and T :

(Θ,F)→ (Θ′,F ′) be a measurable function. f is integrable with respect to T#µ, if and

only if f ◦ T is integrable with respect to µ. In that case, the following equation holds for

any F ′ ∈ F ′,

•(B.10)

∫
{T∈F ′}

f ◦ Tdµ =

∫
F ′
f d(T#µ)

Proof. [3, p. 229, Theorem 16.13] for a version, where X = R. [32, p. 4, Lemma 4] for

the general theorem.
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