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Perspectives on stochastic gradient descent

Stochastic gradient descent (SGD) is a randomised algorithm for the optimisation of large sums of

strongly convex functions.

Perspective 1: In modern machine learning,
stochastic gradient descent is often used with a
so-called constant learning rate, then:

I the algorithm doesn’t converge to a
minimiser, but

I acts as an implicit regulariser

Study the regularisation properties of stochastic

gradient descent.

Perspective 2: Stochastic gradient descent is an
iterative algorithm of the form

✓k  F (✓k�1) (k 2 N),

i.e., the algorithm generates a discrete-time
dynamical system (✓k)1k=0.

Propose a continuous-time variant of stochastic

gradient descent (✓(t))t�0 to analyse the

constant learning rate setting.
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A continuous-time variant of stochastic gradient descent

Initial development:

L. 2021: Analysis of stochastic gradient descent in continuous time, Stat. Comput. 31, 39.

Significant developments since then:

Matei Hanu Kexin Jin Chenguang Liu
Alessandro
Scagliotti

Claudia Schillings
Carola-Bibiane
Schönlieb

Hanu, L., Schillings 2023: Subsampling in ensemble Kalman inversion, Inv. Probl. 39, 094002.
Jin, L., Liu, Scagliotti 2022: Losing momentum in continuous-time stochastic optimisation, preprint.
Jin, L., Liu, Schönlieb 2023: A Continuous-time Stochastic gradient descent Method for Continuous Data, JMLR 24(274):1–48.
Jin, Liu, L. 2024: Subsampling error in Stochastic Gradient Langevin Di↵usions, AISTATS.
L. 2022: Gradient flows and randomised thresholding: sparse inversion and classification, Inv. Probl. 38, 124006.

Funding: Engineering and Physical Sciences Research Council, Swindon, UK Credit for photo: Nick Sa↵ell (Carola-Bibiane Schönlieb)
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Problem setting

Consider a minimisation problem of the form

min
✓2X

�̄(✓) :=
1

N

NX

i=1

�i (✓),

where X := Rn and the �i are su�ciently smooth (i = 1, . . . ,N).

Optimisation in data science

I �̄ is some kind of potential (2 {negative log-likelihood, loss function, misfit}) given with
respect to a large data set

I the �i then represent the potential of a (small) data subsample
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Optimisation in data science, e.g.,

Image reconstruction

Supervised learning
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Optimisation in data science, e.g.,

Image reconstruction

Figure: Image of Galaxy M100 from Hubble before (left) and

after fixing its mirror (right). [NASA, Hubble’s Mirror Flaw]

Use a variational approach to deblur an image by
solving

min
✓2X

1

N

NX

i=1

(Ci✓ � yi )
2 + Reg(✓)| {z }

=�i (✓)

,

where (Ci )Ni=1 are the rows of a kernel matrix, ✓
is the reconstructed image, y is the blurry image,
and Reg : X ! R is an appropriate regulariser.
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Optimisation in data science, e.g.,

Supervised learning

Given a pair of random variables (x , y) ⇠ ⇡x,y .
I Learn how to predict y given x , i.e. find f :

f (x) ⇡ y

Supervised learning: approximate f using a
parametric model bf (·; ✓) and sampled data
(x1, y1), . . . , (xn, yn) ⇠ ⇡x,y by minimising

min
✓2X

1

N

NX

i=1

kbf (xi ; ✓)� yik2| {z }
=�i (✓)

.

Image classification. [Krizhevsky 2009]

Training data, e.g., from the CIFAR10 dataset:

(x1, y1) = ( , ‘cat’),

(x2, y2) = ( , ‘frog’),

(x3, y3) = ( , ‘airplane’),...
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1

N

NX

i=1

kbf (xi ; ✓)� yik2| {z }
=�i (✓)

.

Image classification. [Dechter; 1986]

Deep neural networks have been particularly
successful at imaging tasks. Here,

bf (x ; ✓) = f
(K)

f
(k) = �(W (k)

f
(k�1) + b

(k)) (k = 1, ...,K )

f
(0) = x

with ✓ = (W (1), b(1), . . . ,W (K), b(K)) and �
being an activation function.
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Gradient descent and stochastic gradient descent

How do we solve the following optimisation problem?

min
✓2X

�̄(✓) :=
1

N

NX

i=1

�i (✓)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gradient descent (GD) [Cauchy; 1847]

for k = 1, 2, . . .:

✓k  ✓k�1 � ⌘kr�̄(✓k�1), r�̄(✓k�1) :=
1
N

P
N

i=1r�i (✓k�1)| {z }
(N gradient evaluations)

I converges if �̄ has a minimiser and is convex and if the “step size” ⌘k is su�ciently small
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Gradient descent and stochastic gradient descent

How do we solve the following optimisation problem?

min
✓2X

�̄(✓) :=
1

N

NX

i=1

�i (✓)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stochastic gradient descent (SGD) [Robbins + Monro; 1951]

for k = 1, 2, . . .:
✓k  ✓k�1 � ⌘kr�i k (✓k�1), i k ⇠ Unif(I )| {z }

(= “subsampling”)

.

I converges if �1, . . . ,�N are strongly convex and “learning rate” ⌘k # 0 (k !1) slowly
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Stochastic gradient descent in machine learning

Consider again the supervised learning problem

min
✓2X

1

N

NX

i=1

kbf (xi ; ✓)� yik2.

Problems in supervised learning.

I very large data sets (N � 1) ! SGD can help with that.

I depending on the choice of bf , the target function may be non-convex
I target functions in deep learning are usually non-convex ! SGD might struggle. [Du+al; 2017]

I solving this problem may overfit the data
I machine learning models tend to be highly flexible and overparameterised
I models may fit the noisy training data and generalise badly to unseen data ! Let’s see!
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Overfitting

I machine learning models tend to be highly flexible and overparameterised
I models may fit the noisy training data and generalise badly to unseen data

Example. (Polynomial regression)

Let (x1, y1), . . . , (x10, y10) be data pairs in R⇥ R
with yi = 1� xi + "(i)noise, "

(1)
noise, . . . ⇠ N(0, 1) iid.

Construct model bf (x ; ✓) :=
P6

i=0 ✓iHi (x) on a
Hermite basis.

Truth is badly estimated + estimated model is
unstable with respect to resampling the noise.
! overfitting

-3 -2 -1 0 1 2 3 4
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Regularisation

I The problem of overfitting in learning is related to that of ill-posedness in inverse problems
I ill-posedness describes the non-existence, non-uniqueness or instability of estimates with respect to

changes in the observational data
I Instability:

Inversion: instability usually measured with {Lipschitz, Hölder, -} continuity with respect to data
Learning: study bias-variance tradeo↵: instability ) large variance in training with respect to di↵erent data sets

I Ill-posedness in inverse problems can often be cured with regularisation
I Variational regularisation: enforce additional information by modifying the target function

min
✓

�̄(✓) + Reg(✓)

I Bayesian approach: being aware of uncertainties usually leads to stability/well-posedness

I Overfitting can sometimes be addressed by regularisation [Mohri+al.; 2018]
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https://cs.nyu.edu/~mohri/mlbook/


The Bayesian approach

Optimisation may not actually be the best way to learn a data set
I Fitting the model to the noisy data overfits the model
I Uncertainties remain in the model and are not quantified

Bayesian approach

I Consider the parameter ✓ to be uncertain
and model knowledge/assumptions/... re ✓
with a so-called prior ⇡prior = P(✓ 2 ·)

I Use model and data to learn about ✓ by
conditioning – obtain the posterior

⇡post = P(✓ 2 ·|yi = bf (xi ; ✓)+"(i)noise, i = 1, . . . ,m)

prior

likelihood

posterior

I Predictions of the trained model will be random/uncertain ⇡post(bf (x ; ✓) 2 ·)
I The posterior is usually stable with respect to perturbations in the data ! well-posed

[Dashti+Stuart 2017] [Hosseini; 2017] [L.; 2020, 2023] [Sprungk; 2020] [Stuart; 2010] [Sullivan; 2017] ,...
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The Bayesian approach

I Predictions of the trained model will be random/uncertain ⇡post(f (x ; ✓) 2 ·)

Bayesian polynomial regression

Let (x1, y1), . . . , (x10, y10) be data pairs in R⇥ R
with yi = 1� xi + "(i)noise, "

(1)
noise, . . . ⇠ N(0, 1) iid.

Construct model bf (x ; ✓) :=
P6

i=0 ✓iHi (x) on a
Hermite basis and additionally enforce sparsity
with prior ⇡prior = N(0, diag(2�1, . . . , 2�7).

Stable solution!
! no overfitting
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Stochastic gradient descent and implicit regularisation

I Regularisation of supervised learning problems is di�cult
I Correct choice of regularisers or priors is unclear in general (polynomial regression is easy)
I Bayesian learning is computationally expensive

I Idea: Use stochastic gradient descent with a constant learning rate.
I Markov chain Monte Carlo sampling from the posterior; often through a ‘noisy gradient descent’

✓k  ✓k�1 � ⌘kr�̄(✓k�1) + ⌘kr log ⇡prior(✓k�1) +
p
⌘k⇠k , ⇠1, ⇠2, . . . ⇠ N(0, Id) iid. (ULA)

SGD is also a ‘noisy gradient descent’, maybe it can act as an approximate MCMC sampler?
I high variability in the model with respect to training data often suggests overfitting; SGD leads to

robustness with respect to small data sets at a time.
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Stochastic gradient descent and implicit regularisation

I Can we just apply SGD in a non-convergent regime (say ⌘k constant)?

SGD-regularised Polynomial regression

Let (x1, y1), . . . , (x10, y10) be data pairs in R⇥ R
with yi = 1� xi + "(i)noise, "

(1)
noise, . . . ⇠ N(0, 1) iid.

Construct model bf (x ; ✓) :=
P6

i=0 ✓iHi (x) on a
Hermite basis and optimise the non-regularised
loss function with SGD with learning rate
⌘k = 8 · 10�5.

Not perfect, but not terrible and easy to obtain!
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Stochastic gradient descent and implicit regularisation

I Regularisation of supervised learning problems is di�cult
I Correct choice of regularisers or priors is unclear in general (polynomial regression is easy)
I Bayesian learning is computationally expensive

I Idea: Use stochastic gradient descent with a constant learning rate.
I Markov chain Monte Carlo sampling from the posterior; often through a ‘noisy gradient descent’

✓k  ✓k�1 � ⌘kr�̄(✓k�1) + ⌘kr log ⇡prior(✓k�1) +
p
⌘k⇠k , ⇠1, ⇠2, . . . ⇠ N(0, Id) iid. (ULA)

SGD is also a ‘noisy gradient descent’, maybe it can act as an approximate MCMC sampler?
I high variability in the model with respect to training data often suggests overfitting; SGD leads to

robustness with respect to small data sets at a time.
I Indeed, this is a rather popular way of regularisation in machine learning; part of implicit

regularisation.

I Questions

I What actually happens when we apply SGD with constant learning rate? [Dieuleveut+al.; 2020]

I Is there a stationary regime? What do we know about it? Is it a posterior? [Mandt+al.; 2017]
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Algorithms in continuous time

I Iterative algorithms can be understood as discrete-in-time dynamical systems

⇠k  F (⇠k�1) (k 2 N), ⇠0 2 X

I We can sometimes find continuous-in-time dynamical systems, e.g.,

⇠̇(t) = G (⇠(t)) (t � 0), ⇠(0) = ⇠0

that behave analogous to the iterative algorithms

Example. (Gradient descent and gradient flows)

Gradient descent
⇣k  ⇣k�1 � ⌘kr�̄(⇣k�1) (k 2 N)

is a forward Euler discretisation of the ordinary di↵erential equation

⇣̇(t) = �r�(⇣(t)) (t � 0)

which is a so-called gradient flow.
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Algorithms in continuous time

It is sometimes easier or more appropriate to analyse algorithms in continuous time
I certain numerical artefacts that appear in the discrete setting are not particularly interesting:

sti↵ness, step size restrictions,... [Iserles; 2012]

I certain e↵ects can are more or only visible in a continuous setting: ill-posedness of
deconvolution,... [Bredies+Lorenz; 2018]

I continuous time adds additional regularity

Continuous time allows us to compare algorithms to physical/biological processes
I Gradient flows appear everywhere, e.g., the heat equation u̇ = 4u [Santambrogio; 2017]

I Certain classification methods behave like partial di↵erential equations that describe phase
separation [Budd+van Gennip; 2020] [Budd+van Gennip+L.; 2021]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
More examples: Ensemble Kalman inversion [Schillings+Stuart; 2017] [Blömker+al.; 2019] , data assimilation

[Law+al. 2015] [de Wiljes+al. 2018] , continuum limits of graphs [Trillos+Sanz-Alonso; 2018] , MCMC [Ottobre+al.; 2019] ,

image reconstruction [Rudin+al.; 1992] [Schönlieb; 2015] , data science [Kreusser+Wolfram; 2020]
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Di↵usion limit of SGD

Predominant model for SGD in continuous time: Di↵usion process

I Idea: ⌘k = ⌘ ⇡ 0) gradient error is approximately Gaussian (CLT)

I Hence, (✓k)1k=1 can be represented by a di↵usion process

✓̇sde(t) = �r�̄(✓sde(t)) +
p
⌘⌃(✓sde(t))

1/2
Ẇt (t � 0), ✓(0) = ✓0.

[Hu+al.; 2019] [Li+al.; 2016, 2017, 2019] [Mandt+al.; 2015, 2016, 2017] [Wojtowytsch; 2024] ,...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I for large ⌘k , the paths of (✓k)1k=1 are very di↵erent from a di↵usion
I preasymptotic phase and constant ⌘k not explained

I di↵usion does not actually explain subsampling in a continuous-time model
I does not represent the discrete nature of the potential selection
I needs access to �̄
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Observations and fundamental idea

I the update
✓k  ✓k�1 � ⌘r�i k (✓k�1) (discrete)

is a forward Euler discretisation of the gradient flow

✓̇(t) = �r�i k (✓(t)) (continuous)

I learning rate ⌘ has two di↵erent meanings
(i) ⌘ is the step size of the gradient flow discretisation
(ii) ⌘ determines the length of the time interval with which we switch the �i

Idea.

Obtain a continuous time model for SGD, by

(i) let the step size go to 0, i.e. replace (discrete) by (continuous).

(ii) switch the potentials in the gradient flow at a rate of 1/⌘
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Switching of the potentials

control the switching of the potentials by a continuous-time Markov process (CTMP) (i (t))t�0 on
I := {1, ...,N} (“index process”)

t

N

N � 1
...
2
1
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

i (t)

Figure: Cartoon of a CTMP

CTMPs 101

I (i (t))t�0 is piecewise constant

I randomly jumps from one state to another after a random waiting time � ⇠ ⇡wt(·|t0)
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Stochastic gradient process

CTMP (i (t))t�0 representing a constant learning rate ⌘• ⌘ ⌘ > 0

I constant learning rates are popular in practice

I ⇡wt(·|t0) is constant in time (indeed this will be an exponential distribution)

(i (t))t�0 has constant transition rate matrix A 2 RN⇥N : Ai,j :=

(
1

(N�1)⌘ , if i 6= j ,

� 1
⌘ , if i = j .

Definition. [L.; 2021]

We define the stochastic gradient process with constant learning rate (SGPC) by (✓(t))t�0,
which satisfies

✓̇(t) = �r�i (t)(✓(t)) (t � 0), ✓(0) = ✓0.

(✓(t))t�0 and (⇠(t))t�0 are almost surely well-defined, if

Assumption [Lipschitz]. For i 2 I : �i 2 C
1(X ,R) and r�i is Lipschitz continuous.
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Stochastic gradient process

t

N

N � 1
...
2
1

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

i (t)

✓(t)
X

t

Figure: Cartoon of SGPC
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Properties

I (i (t), ✓(t))t�0 is a piecewise-deterministic Markov process: essentially an ODE with a
right-hand side that changes at random points in time

I the choice of the transition rate matrix of (i (t), ✓(t))t�0 leads to subsampling at rate 1/⌘
I mean waiting time E[Ti � Ti�1] = ⌘

I (✓(t))t�0 approximates the gradient flow (⇣(t))t�0 for small ⌘ [L.; 2021]
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Short learning rate (⌘ # 0)
Example. Let �1(✓) := (✓ � 1)2/2 and �2(✓) := (✓ + 1)2/2. ) �̄(✓) = (✓2 + 1)/2.

0 1 2 3 4 5 6 7 8 9 10
-1

-0.5

0

0.5

1

1.5

2
 = 1
 = 0.1

 = 0.01
 = 0.001

-flow

Figure: Exemplary realisations of SGPC and plot of precise gradient flow. Discretisation with ode45.

Convergence proof in [L.; 2021] using techniques from [Kushner; 1984] .
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Properties

I (i (t), ✓(t))t�0 is a piecewise-deterministic Markov process: essentially an ODE with a
right-hand side that changes at random points in time

I the choice of the transition rate matrix of (i (t), ✓(t))t�0 leads to subsampling at rate 1/⌘
I mean waiting time E[Ti � Ti�1] = ⌘

I (✓(t))t�0 approximates the gradient flow (⇣(t))t�0 for small ⌘ [L.; 2021]

I stochastic gradient flow has a biological interpretation [Kussell+Leibler; 2005]

I clonal populations that live in randomly changing environments use diversified bet-hedging
strategies that follow similar dynamics
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Longtime behaviour (t !1)

What happens with P(✓(t) 2 ·) as t !1?

I Stability? Stationary measures?

I Speed of convergence?

I Characterisation of stationary measures?

I Implicit regularisation?

I Posteriors?
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Preliminaries

Wasserstein distance

Let q 2 (0, 1]. Consider Wasserstein distance between ⇡,⇡0 2 Prob(X ):

W(⇡,⇡0) := inf
H2Coup(⇡,⇡0)

Z

X⇥X

min{1, k✓ � ✓0kq2}H(d✓, d✓0),

Coup(⇡,⇡0) := {G 2 Prob(X 2) : G (·⇥ X ) = ⇡, G (X ⇥ ·) = ⇡0}.

Assumption [Smooth]. For any i 2 I , let �i 2 C
2(X ;R) and let r�i ,H�i be

continuous and bounded on bounded subsets of X .

Assumption [Convex]. There are some i 2 R, with

h✓0 � ✓00,r�i (✓0)�r�i (✓
0
0)i � ik✓0 � ✓00k2 (✓0, ✓

0
0 2 X , i 2 I ),

with 1 + · · ·+ N > 0.
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Longtime behaviour (t !1)

Theorem. [L.; 2021]

Let Assumptions [Smooth] and [Convex] hold. Then, (✓(t), i (t))t>0 has a unique stationary
measure ⇡C on (X ⇥ I ,BX ⌦ 2I ). Moreover, there exist 0, c > 0 and q 2 (0, 1], with

W(⇡C(·⇥ I ),P(✓(t) 2 ·|✓0, i0))  c exp(�0
t)

 
1 +

X

i2I

Z

X

k✓0 � ✓0kq⇡C(d✓
0 ⇥ {i})

!

(i0 2 I , ✓0 2X ).
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0

@1 +
X

i2I

Z

X

k✓0 � ✓0kq⇡C(d✓0 ⇥ {i})

1

A (i0 2 I , ✓0 2X ).

I convergence with exponential speed

I proof based on results by [Benäım+al.; 2012] [Cloez+Hairer; 2015]

I convexity assumption can be weakened (needs Hörmander Bracket condition)

I SGD with constant stepsize is safe to use in ‘more-convex-than-not’ settings and converges very
quickly to its stationary regime

Jonas Latz (Manchester) 38 of 44

https://link.springer.com/article/10.1007/s11222-021-10016-8
https://projecteuclid.org/journals/electronic-communications-in-probability/volume-17/issue-none/Quantitative-ergodicity-for-some-switched-dynamical-systems/10.1214/ECP.v17-1932.full
https://projecteuclid.org/journals/bernoulli/volume-21/issue-1/Exponential-ergodicity-for-Markov-processes-with-random-switching/10.3150/13-BEJ577.full


Longtime behaviour (t !1)

Figure: Kernel density estimates of P(✓(10) 2 ·|✓(0) = �1.5) ⇡ ⇡C (SGPC) and P(✓10/⌘ 2 ·|✓0 = �1.5) (SGD) based on

⌘ 2 {1, 0.1, 0.01, 0.001} using 10,000 samples each. [Example. Let N := 3, i.e. I := {1, 2, 3}, and X := R. We define the potentials

�1(✓) := 1
2 (✓ + 2)2, �2(✓) := 1

2 (✓ � 1.5)2, �3(✓) := 1
2 (✓ � 2)2 (✓ 2 X ). Here, argmin�̄ = {0.5}.]
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Stationary distributions and implicit regularisation

I ⇡C might be a good representation for the implicit regularisation achieved by SGD

I It appears as if ⇡C ! �(·� ✓⇤), as ⌘ # 0, where ✓⇤ 2 argmin �̄. Indeed, we can show:

Corollary.

Let Assumptions [Smooth] and [Convex2] hold. Then, lim⌘#0 W(⇡C(·⇥ I ), �(·� ✓⇤)) = 0.

Assumption [Convex2]. There is a  > 0, with

h✓0 � ✓00,r�i (✓0)�r�i (✓
0
0)i � k✓0 � ✓00k2 (✓0, ✓

0
0 2 X , i 2 I ).

I the corollary above is a simple application of Proposition 4(ii) in [L.; 2021]

I the result shows that ⌘ controls the strength of the regularisation
I decreasing ⌘ over time corresponds to the classical SGD setting
I we can also do that in the stochastic gradient process
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Implicit regularisation and posteriors

I ⇡C behaves quite di↵erently from a posterior!
I there is no natural underlying prior
I usually concentrated on a compact set, sometimes on a subspace [Benaim+al.; 2015]

SGPC in a Gaussian setting

Consider the quadratic minimisation problem

min
✓2R2

1

2
k✓ � 1k2| {z }

:=�1

+
1

2
k✓ + 1k2| {z }

:=�1

Employ SGPC with ⌘ = 10.

⇡C is concentrated on a subspace and rather
di↵erent from the measure we would associate
with this optimisation problem.
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I ⇡C behaves quite di↵erently from a posterior!
I there is no natural underlying prior
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I Can we turn this into a posterior?
I In principle, yes. The Stochastic Gradient Langevin Dynamics combines SGD and ULA by adding

white noise to SGD. It approximates ⇡ / exp(��̄). [Welling+Teh; 2011]

I In continuous time, we obtain the Stochastic Gradient Langevin Di↵usion [Jin, Liu, L.; 2024]

d✓(t) = �r�i (t)(✓(t))dt +
p
2dWt ,
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Conclusions

today:

I Implicit regularisation is a vital tool in machine learning; the stochastic gradient descent
algorithm can be used as such an implicit regulariser

I the stochastic gradient process is a natural continuous-time variant of stochastic gradient
descent

I in convex settings, stochastic gradient processes are stable and converge quickly to their
stationary regime.

I the stationary regime may explain implicit regularisation; the strength of regularisation is
controlled by the learning rate parameter

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
related results:

I mildly non-convex/non-smooth optimisation [L.; 2022]

I subsampling in particle-based optimisation [Hanu+L.+Schillings; 2023]

I subsampling with continuous data and other sampling patterns [Jin+Liu+L.+Schönlieb; 2023]

I understanding the (underdamped) Adam method [Jin+L.+Liu+Scagliotti; 2022]
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