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Perspectives on stochastic gradient descent

Stochastic gradient descent (SGD) is a randomised algorithm for the optimisation of large sums of

strongly convex functions.

Perspective 1: In modern machine learning,
stochastic gradient descent is often used with a
so-called constant learning rate, then:

I the algorithm doesn’t converge to a
minimiser, but

I acts as an implicit regulariser

Study the regularisation properties of stochastic

gradient descent.

Perspective 2: Stochastic gradient descent is an
iterative algorithm of the form

✓k  F (✓k�1) (k 2 N),

i.e., the algorithm generates a discrete-time
dynamical system (✓k)1k=0.

Propose a continuous-time variant of stochastic

gradient descent (✓(t))t�0 to analyse the

constant learning rate setting.
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A continuous-time variant of stochastic gradient descent

Initial development:

L. 2021: Analysis of stochastic gradient descent in continuous time, Stat. Comput. 31, 39.

Significant developments since then:

Matei Hanu Kexin Jin Chenguang Liu
Alessandro
Scagliotti

Claudia Schillings
Carola-Bibiane
Schönlieb

Hanu, L., Schillings 2023: Subsampling in ensemble Kalman inversion, Inv. Probl. 39, 094002.
Jin, L., Liu, Scagliotti 2022: Losing momentum in continuous-time stochastic optimisation, preprint.
Jin, L., Liu, Schönlieb 2023: A Continuous-time Stochastic gradient descent Method for Continuous Data, JMLR 24(274):1–48.
Jin, Liu, L. 2024: Subsampling error in Stochastic Gradient Langevin Di↵usions, AISTATS.
L. 2022: Gradient flows and randomised thresholding: sparse inversion and classification, Inv. Probl. 38, 124006.

Funding: Engineering and Physical Sciences Research Council, Swindon, UK Credit for photo: Nick Sa↵ell (Carola-Bibiane Schönlieb)
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Problem setting

Consider a minimisation problem of the form

min
✓2X

�̄(✓) :=
1

N

NX

i=1

�i (✓),

where X := Rn and the �i are su�ciently smooth (i = 1, . . . ,N).

Optimisation in data science

I �̄ is some kind of potential (2 {negative log-likelihood, loss function, misfit}) given with
respect to a large data set

I the �i then represent the potential of a (small) data subsample
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Optimisation in data science, e.g.,

Image reconstruction

Supervised learning
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Optimisation in data science, e.g.,

Image reconstruction

Figure: Image of Galaxy M100 from Hubble before (left) and

after fixing its mirror (right). [NASA, Hubble’s Mirror Flaw]

Use a variational approach to deblur an image by
solving

min
✓2X

1

N

NX

i=1

(Ci✓ � yi )
2 + Reg(✓)| {z }

=�i (✓)

,

where (Ci )Ni=1 are the rows of a kernel matrix, ✓
is the reconstructed image, y is the blurry image,
and Reg : X ! R is an appropriate regulariser.
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Optimisation in data science, e.g.,

Supervised learning

Given a pair of random variables (x , y) ⇠ ⇡x,y .
I Learn how to predict y given x , i.e. find f :

f (x) ⇡ y

Supervised learning: approximate f using a
parametric model bf (·; ✓) and sampled data
(x1, y1), . . . , (xn, yn) ⇠ ⇡x,y by minimising

min
✓2X

1

N

NX

i=1

kbf (xi ; ✓)� yik2| {z }
=�i (✓)

.

Image classification. [Krizhevsky 2009]

Training data, e.g., from the CIFAR10 dataset:

(x1, y1) = ( , ‘cat’),

(x2, y2) = ( , ‘frog’),

(x3, y3) = ( , ‘airplane’),...
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1

N

NX

i=1

kbf (xi ; ✓)� yik2| {z }
=�i (✓)

.

Image classification. [Dechter; 1986]

Deep neural networks have been particularly
successful at imaging tasks. Here,

bf (x ; ✓) = f
(K)

f
(k) = �(W (k)

f
(k�1) + b

(k)) (k = 1, ...,K )

f
(0) = x

with ✓ = (W (1), b(1), . . . ,W (K), b(K)) and �
being an activation function.
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Gradient descent and stochastic gradient descent

How do we solve the following optimisation problem?

min
✓2X

�̄(✓) :=
1

N

NX

i=1

�i (✓)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gradient descent (GD) [Cauchy; 1847]

for k = 1, 2, . . .:

✓k  ✓k�1 � ⌘kr�̄(✓k�1), r�̄(✓k�1) :=
1
N

P
N

i=1r�i (✓k�1)| {z }
(N gradient evaluations)

I converges if �̄ has a minimiser and is convex and if the “step size” ⌘k is su�ciently small
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Gradient descent and stochastic gradient descent

How do we solve the following optimisation problem?

min
✓2X

�̄(✓) :=
1

N

NX

i=1

�i (✓)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stochastic gradient descent (SGD) [Robbins + Monro; 1951]

for k = 1, 2, . . .:
✓k  ✓k�1 � ⌘kr�i k (✓k�1), i k ⇠ Unif(I )| {z }

(= “subsampling”)

.

I converges if �1, . . . ,�N are strongly convex and “learning rate” ⌘k # 0 (k !1) slowly
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Stochastic gradient descent in machine learning

Consider again the supervised learning problem

min
✓2X

1

N

NX

i=1

kbf (xi ; ✓)� yik2.

Problems in supervised learning.

I very large data sets (N � 1) ! SGD can help with that.

I depending on the choice of bf , the target function may be non-convex
I target functions in deep learning are usually non-convex ! SGD might struggle. [Du+al; 2017]

I solving this problem may overfit the data
I machine learning models tend to be highly flexible and overparameterised
I models may fit the noisy training data and generalise badly to unseen data ! Let’s see!
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Overfitting

I machine learning models tend to be highly flexible and overparameterised
I models may fit the noisy training data and generalise badly to unseen data

Example. (Polynomial regression)

Let (x1, y1), . . . , (x10, y10) be data pairs in R⇥ R
with yi = 1� xi + "(i)noise, "

(1)
noise, . . . ⇠ N(0, 1) iid.

Construct model bf (x ; ✓) :=
P6

i=0 ✓iHi (x) on a
Hermite basis.

Truth is badly estimated + estimated model is
unstable with respect to resampling the noise.
! overfitting

-3 -2 -1 0 1 2 3 4
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Regularisation

I The problem of overfitting in learning is related to that of ill-posedness in inverse problems
I ill-posedness describes the non-existence, non-uniqueness or instability of estimates with respect to

changes in the observational data
I Instability:

Inversion: instability usually measured with {Lipschitz, Hölder, -} continuity with respect to data
Learning: study bias-variance tradeo↵: instability ) large variance in training with respect to di↵erent data sets

I Ill-posedness in inverse problems can often be cured with regularisation
I Variational regularisation: enforce additional information by modifying the target function

min
✓

�̄(✓) + Reg(✓)

I Bayesian approach: being aware of uncertainties usually leads to stability/well-posedness

I Overfitting can sometimes be addressed by regularisation [Mohri+al.; 2018]
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The Bayesian approach

Optimisation may not actually be the best way to learn a data set
I Fitting the model to the noisy data overfits the model
I Uncertainties remain in the model and are not quantified

Bayesian approach

I Consider the parameter ✓ to be uncertain
and model knowledge/assumptions/... re ✓
with a so-called prior ⇡prior = P(✓ 2 ·)

I Use model and data to learn about ✓ by
conditioning – obtain the posterior

⇡post = P(✓ 2 ·|yi = bf (xi ; ✓)+"(i)noise, i = 1, . . . ,m)

prior

likelihood

posterior

I Predictions of the trained model will be random/uncertain ⇡post(bf (x ; ✓) 2 ·)
I The posterior is usually stable with respect to perturbations in the data ! well-posed

[Dashti+Stuart 2017] [Hosseini; 2017] [L.; 2020, 2023] [Sprungk; 2020] [Stuart; 2010] [Sullivan; 2017] ,...
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The Bayesian approach

I Predictions of the trained model will be random/uncertain ⇡post(f (x ; ✓) 2 ·)

Bayesian polynomial regression

Let (x1, y1), . . . , (x10, y10) be data pairs in R⇥ R
with yi = 1� xi + "(i)noise, "

(1)
noise, . . . ⇠ N(0, 1) iid.

Construct model bf (x ; ✓) :=
P6

i=0 ✓iHi (x) on a
Hermite basis and additionally enforce sparsity
with prior ⇡prior = N(0, diag(2�1, . . . , 2�7).

Stable solution!
! no overfitting
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Stochastic gradient descent and implicit regularisation

I Regularisation of supervised learning problems is di�cult
I Correct choice of regularisers or priors is unclear in general (polynomial regression is easy)
I Bayesian learning is computationally expensive

I Idea: Use stochastic gradient descent with a constant learning rate.
I Markov chain Monte Carlo sampling from the posterior; often through a ‘noisy gradient descent’

✓k  ✓k�1 � ⌘kr�̄(✓k�1) + ⌘kr log ⇡prior(✓k�1) +
p
⌘k⇠k , ⇠1, ⇠2, . . . ⇠ N(0, Id) iid. (ULA)

SGD is also a ‘noisy gradient descent’, maybe it can act as an approximate MCMC sampler?
I high variability in the model with respect to training data often suggests overfitting; SGD leads to

robustness with respect to small data sets at a time.
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Stochastic gradient descent and implicit regularisation

I Can we just apply SGD in a non-convergent regime (say ⌘k constant)?

SGD-regularised Polynomial regression

Let (x1, y1), . . . , (x10, y10) be data pairs in R⇥ R
with yi = 1� xi + "(i)noise, "

(1)
noise, . . . ⇠ N(0, 1) iid.

Construct model bf (x ; ✓) :=
P6

i=0 ✓iHi (x) on a
Hermite basis and optimise the non-regularised
loss function with SGD with learning rate
⌘k = 8 · 10�5.

Not perfect, but not terrible and easy to obtain!
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Stochastic gradient descent and implicit regularisation

I Regularisation of supervised learning problems is di�cult
I Correct choice of regularisers or priors is unclear in general (polynomial regression is easy)
I Bayesian learning is computationally expensive

I Idea: Use stochastic gradient descent with a constant learning rate.
I Markov chain Monte Carlo sampling from the posterior; often through a ‘noisy gradient descent’

✓k  ✓k�1 � ⌘kr�̄(✓k�1) + ⌘kr log ⇡prior(✓k�1) +
p
⌘k⇠k , ⇠1, ⇠2, . . . ⇠ N(0, Id) iid. (ULA)

SGD is also a ‘noisy gradient descent’, maybe it can act as an approximate MCMC sampler?
I high variability in the model with respect to training data often suggests overfitting; SGD leads to

robustness with respect to small data sets at a time.
I Indeed, this is a rather popular way of regularisation in machine learning; part of implicit

regularisation.

I Questions

I What actually happens when we apply SGD with constant learning rate? [Dieuleveut+al.; 2020]

I Is there a stationary regime? What do we know about it? Is it a posterior? [Mandt+al.; 2017]

Jonas Latz (Manchester) 21 of 44

https://doi.org/10.1214/19-AOS1850
https://www.jmlr.org/papers/volume18/17-214/17-214.pdf


Outline

Motivation and background
Optimisation in data science
Challenges in supervised learning and stochastic gradient descent

Stochastic gradient descent in continuous time
Algorithms in continuous time
Stochastic gradient processes

Longtime behaviour of stochastic gradient processes and implicit regularisation

Conclusions

Jonas Latz (Manchester) 22 of 44



Algorithms in continuous time

I Iterative algorithms can be understood as discrete-in-time dynamical systems

⇠k  F (⇠k�1) (k 2 N), ⇠0 2 X

I We can sometimes find continuous-in-time dynamical systems, e.g.,

⇠̇(t) = G (⇠(t)) (t � 0), ⇠(0) = ⇠0

that behave analogous to the iterative algorithms

Example. (Gradient descent and gradient flows)

Gradient descent
⇣k  ⇣k�1 � ⌘kr�̄(⇣k�1) (k 2 N)

is a forward Euler discretisation of the ordinary di↵erential equation

⇣̇(t) = �r�(⇣(t)) (t � 0)

which is a so-called gradient flow.
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Algorithms in continuous time

It is sometimes easier or more appropriate to analyse algorithms in continuous time
I certain numerical artefacts that appear in the discrete setting are not particularly interesting:

sti↵ness, step size restrictions,... [Iserles; 2012]

I certain e↵ects can are more or only visible in a continuous setting: ill-posedness of
deconvolution,... [Bredies+Lorenz; 2018]

I continuous time adds additional regularity

Continuous time allows us to compare algorithms to physical/biological processes
I Gradient flows appear everywhere, e.g., the heat equation u̇ = 4u [Santambrogio; 2017]

I Certain classification methods behave like partial di↵erential equations that describe phase
separation [Budd+van Gennip; 2020] [Budd+van Gennip+L.; 2021]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
More examples: Ensemble Kalman inversion [Schillings+Stuart; 2017] [Blömker+al.; 2019] , data assimilation

[Law+al. 2015] [de Wiljes+al. 2018] , continuum limits of graphs [Trillos+Sanz-Alonso; 2018] , MCMC [Ottobre+al.; 2019] ,

image reconstruction [Rudin+al.; 1992] [Schönlieb; 2015] , data science [Kreusser+Wolfram; 2020]
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Di↵usion limit of SGD

Predominant model for SGD in continuous time: Di↵usion process

I Idea: ⌘k = ⌘ ⇡ 0) gradient error is approximately Gaussian (CLT)

I Hence, (✓k)1k=1 can be represented by a di↵usion process

✓̇sde(t) = �r�̄(✓sde(t)) +
p
⌘⌃(✓sde(t))

1/2
Ẇt (t � 0), ✓(0) = ✓0.

[Hu+al.; 2019] [Li+al.; 2016, 2017, 2019] [Mandt+al.; 2015, 2016, 2017] [Wojtowytsch; 2024] ,...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I for large ⌘k , the paths of (✓k)1k=1 are very di↵erent from a di↵usion
I preasymptotic phase and constant ⌘k not explained

I di↵usion does not actually explain subsampling in a continuous-time model
I does not represent the discrete nature of the potential selection
I needs access to �̄
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Observations and fundamental idea

I the update
✓k  ✓k�1 � ⌘r�i k (✓k�1) (discrete)

is a forward Euler discretisation of the gradient flow

✓̇(t) = �r�i k (✓(t)) (continuous)

I learning rate ⌘ has two di↵erent meanings
(i) ⌘ is the step size of the gradient flow discretisation
(ii) ⌘ determines the length of the time interval with which we switch the �i

Idea.

Obtain a continuous time model for SGD, by

(i) let the step size go to 0, i.e. replace (discrete) by (continuous).

(ii) switch the potentials in the gradient flow at a rate of 1/⌘
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Switching of the potentials

control the switching of the potentials by a continuous-time Markov process (CTMP) (i (t))t�0 on
I := {1, ...,N} (“index process”)

t

N

N � 1
...
2
1
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

i (t)

Figure: Cartoon of a CTMP

CTMPs 101

I (i (t))t�0 is piecewise constant

I randomly jumps from one state to another after a random waiting time � ⇠ ⇡wt(·|t0)

Jonas Latz (Manchester) 28 of 44



Stochastic gradient process

CTMP (i (t))t�0 representing a constant learning rate ⌘• ⌘ ⌘ > 0

I constant learning rates are popular in practice

I ⇡wt(·|t0) is constant in time (indeed this will be an exponential distribution)

(i (t))t�0 has constant transition rate matrix A 2 RN⇥N : Ai,j :=

(
1

(N�1)⌘ , if i 6= j ,

� 1
⌘ , if i = j .

Definition. [L.; 2021]

We define the stochastic gradient process with constant learning rate (SGPC) by (✓(t))t�0,
which satisfies

✓̇(t) = �r�i (t)(✓(t)) (t � 0), ✓(0) = ✓0.

(✓(t))t�0 and (⇠(t))t�0 are almost surely well-defined, if

Assumption [Lipschitz]. For i 2 I : �i 2 C
1(X ,R) and r�i is Lipschitz continuous.
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Stochastic gradient process

t

N

N � 1
...
2
1

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

i (t)

✓(t)
X

t

Figure: Cartoon of SGPC
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Properties

I (i (t), ✓(t))t�0 is a piecewise-deterministic Markov process: essentially an ODE with a
right-hand side that changes at random points in time

I the choice of the transition rate matrix of (i (t), ✓(t))t�0 leads to subsampling at rate 1/⌘
I mean waiting time E[Ti � Ti�1] = ⌘

I (✓(t))t�0 approximates the gradient flow (⇣(t))t�0 for small ⌘ [L.; 2021]
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Short learning rate (⌘ # 0)
Example. Let �1(✓) := (✓ � 1)2/2 and �2(✓) := (✓ + 1)2/2. ) �̄(✓) = (✓2 + 1)/2.

0 1 2 3 4 5 6 7 8 9 10
-1

-0.5

0

0.5

1

1.5

2
 = 1
 = 0.1

 = 0.01
 = 0.001

-flow

Figure: Exemplary realisations of SGPC and plot of precise gradient flow. Discretisation with ode45.

Convergence proof in [L.; 2021] using techniques from [Kushner; 1984] .
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Properties

I (i (t), ✓(t))t�0 is a piecewise-deterministic Markov process: essentially an ODE with a
right-hand side that changes at random points in time

I the choice of the transition rate matrix of (i (t), ✓(t))t�0 leads to subsampling at rate 1/⌘
I mean waiting time E[Ti � Ti�1] = ⌘

I (✓(t))t�0 approximates the gradient flow (⇣(t))t�0 for small ⌘ [L.; 2021]

I stochastic gradient flow has a biological interpretation [Kussell+Leibler; 2005]

I clonal populations that live in randomly changing environments use diversified bet-hedging
strategies that follow similar dynamics
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Longtime behaviour (t !1)

What happens with P(✓(t) 2 ·) as t !1?

I Stability? Stationary measures?

I Speed of convergence?

I Characterisation of stationary measures?

I Implicit regularisation?

I Posteriors?
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Preliminaries

Wasserstein distance

Let q 2 (0, 1]. Consider Wasserstein distance between ⇡,⇡0 2 Prob(X ):

W(⇡,⇡0) := inf
H2Coup(⇡,⇡0)

Z

X⇥X

min{1, k✓ � ✓0kq2}H(d✓, d✓0),

Coup(⇡,⇡0) := {G 2 Prob(X 2) : G (·⇥ X ) = ⇡, G (X ⇥ ·) = ⇡0}.

Assumption [Smooth]. For any i 2 I , let �i 2 C
2(X ;R) and let r�i ,H�i be

continuous and bounded on bounded subsets of X .

Assumption [Convex]. There are some i 2 R, with

h✓0 � ✓00,r�i (✓0)�r�i (✓
0
0)i � ik✓0 � ✓00k2 (✓0, ✓

0
0 2 X , i 2 I ),

with 1 + · · ·+ N > 0.
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Longtime behaviour (t !1)

Theorem. [L.; 2021]

Let Assumptions [Smooth] and [Convex] hold. Then, (✓(t), i (t))t>0 has a unique stationary
measure ⇡C on (X ⇥ I ,BX ⌦ 2I ). Moreover, there exist 0, c > 0 and q 2 (0, 1], with

W(⇡C(·⇥ I ),P(✓(t) 2 ·|✓0, i0))  c exp(�0
t)

 
1 +

X

i2I

Z

X

k✓0 � ✓0kq⇡C(d✓
0 ⇥ {i})

!

(i0 2 I , ✓0 2X ).
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@1 +
X

i2I

Z

X

k✓0 � ✓0kq⇡C(d✓0 ⇥ {i})

1

A (i0 2 I , ✓0 2X ).

I convergence with exponential speed

I proof based on results by [Benäım+al.; 2012] [Cloez+Hairer; 2015]

I convexity assumption can be weakened (needs Hörmander Bracket condition)

I SGD with constant stepsize is safe to use in ‘more-convex-than-not’ settings and converges very
quickly to its stationary regime
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Longtime behaviour (t !1)

Figure: Kernel density estimates of P(✓(10) 2 ·|✓(0) = �1.5) ⇡ ⇡C (SGPC) and P(✓10/⌘ 2 ·|✓0 = �1.5) (SGD) based on

⌘ 2 {1, 0.1, 0.01, 0.001} using 10,000 samples each. [Example. Let N := 3, i.e. I := {1, 2, 3}, and X := R. We define the potentials

�1(✓) := 1
2 (✓ + 2)2, �2(✓) := 1

2 (✓ � 1.5)2, �3(✓) := 1
2 (✓ � 2)2 (✓ 2 X ). Here, argmin�̄ = {0.5}.]
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Stationary distributions and implicit regularisation

I ⇡C might be a good representation for the implicit regularisation achieved by SGD

I It appears as if ⇡C ! �(·� ✓⇤), as ⌘ # 0, where ✓⇤ 2 argmin �̄. Indeed, we can show:

Corollary.

Let Assumptions [Smooth] and [Convex2] hold. Then, lim⌘#0 W(⇡C(·⇥ I ), �(·� ✓⇤)) = 0.

Assumption [Convex2]. There is a  > 0, with

h✓0 � ✓00,r�i (✓0)�r�i (✓
0
0)i � k✓0 � ✓00k2 (✓0, ✓

0
0 2 X , i 2 I ).

I the corollary above is a simple application of Proposition 4(ii) in [L.; 2021]

I the result shows that ⌘ controls the strength of the regularisation
I decreasing ⌘ over time corresponds to the classical SGD setting
I we can also do that in the stochastic gradient process

Jonas Latz (Manchester) 40 of 44

https://link.springer.com/article/10.1007/s11222-021-10016-8


Implicit regularisation and posteriors

I ⇡C behaves quite di↵erently from a posterior!
I there is no natural underlying prior
I usually concentrated on a compact set, sometimes on a subspace [Benaim+al.; 2015]

SGPC in a Gaussian setting

Consider the quadratic minimisation problem

min
✓2R2

1

2
k✓ � 1k2| {z }

:=�1

+
1

2
k✓ + 1k2| {z }

:=�1

Employ SGPC with ⌘ = 10.

⇡C is concentrated on a subspace and rather
di↵erent from the measure we would associate
with this optimisation problem.
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I Can we turn this into a posterior?
I In principle, yes. The Stochastic Gradient Langevin Dynamics combines SGD and ULA by adding

white noise to SGD. It approximates ⇡ / exp(��̄). [Welling+Teh; 2011]

I In continuous time, we obtain the Stochastic Gradient Langevin Di↵usion [Jin, Liu, L.; 2024]

d✓(t) = �r�i (t)(✓(t))dt +
p
2dWt ,
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Conclusions

today:

I Implicit regularisation is a vital tool in machine learning; the stochastic gradient descent
algorithm can be used as such an implicit regulariser

I the stochastic gradient process is a natural continuous-time variant of stochastic gradient
descent

I in convex settings, stochastic gradient processes are stable and converge quickly to their
stationary regime.

I the stationary regime may explain implicit regularisation; the strength of regularisation is
controlled by the learning rate parameter

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
related results:

I mildly non-convex/non-smooth optimisation [L.; 2022]

I subsampling in particle-based optimisation [Hanu+L.+Schillings; 2023]

I subsampling with continuous data and other sampling patterns [Jin+Liu+L.+Schönlieb; 2023]

I understanding the (underdamped) Adam method [Jin+L.+Liu+Scagliotti; 2022]
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